Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2011-I-16

Posted on 16-06-202120-06-2023 By app.cch No Comments on 2011-I-16
Ans: (a) $3x-8y+8=0$ (b) $(16,7)$ (c) (i) $(x-16)^2+(y-7)^2=73^2$ (ii) No

  1. Since $\Delta PQR$ is an isosceles triangle with $PQ=PR$, then $PS$ is the axis of symmetry of $\Delta PQR$. Therefore, the coordinates of $R$ are $(64,-48)$.

    The mid-point of $PR$

    $\begin{array}{cl}
    = & \left( \dfrac{16+64}{2}, \dfrac{80+(-48)}{2} \right) \\
    = & (40,16)
    \end{array}$

    The slope of $PR$

    $\begin{array}{cl}
    = & \dfrac{80 – (-48)}{16-64} \\
    = & \dfrac{-8}{3}
    \end{array}$

    Therefore, the slope of the perpendicular bisector

    $\begin{array}{cl}
    = & -1 \div \dfrac{-8}{3} \\
    = & \dfrac{3}{8}
    \end{array}$

    Hence, the equation of the perpendicular bisector of $PR$ is

    $\begin{array}{rcl}
    y-16 & = & \dfrac{3}{8}(x-40) \\
    8y – 128 & = & 3x – 120 \\
    3x-8y + 8 & = & 0
    \end{array}$

  2. Since $\Delta PQR$ is an isosceles triangle with $PQ=PR$, then $PS$ is the perpendicular bisector of $QR$. Therefore, the circumcentre of $\Delta PQR$ must lies on $PS$. Hence the $x$ coordinate of the circumcentre is $16$.

    Sub. $x=16$ into $3x-8y+8=0$, we have

    $\begin{array}{rcl}
    3(16) – 8y +8 & = & 0 \\
    8y & = & 56 \\
    y & = & 7
    \end{array}$

    Therefore, the coordinates of the circumcentre of $\Delta PQR$ are $(16,7)$.

    1. The radius of the circle

      $\begin{array}{cl}
      = & 80 – 7 \\
      = & 73
      \end{array}$

      Therefore, the equation of $C$ is $(x-16)^2+(y-7)^2=73^2$.

    2. Since $\Delta PQR$ is an isosceles triangle with $PQ=PR$, then $PS\perp QR$, i.e. $\angle PSQ=90^\circ$. Let $K$ be the centre of $C$. If $K$ is also the in-centre, then $KQ$ is the angle bisector of $\angle PQS$.

      In $\Delta PSQ$,

      $\begin{array}{rcl}
      \tan \angle PQS & = & \dfrac{PS}{QS} \\
      & = & \dfrac{80-(-48)}{16 – (-32)} \\
      \angle PQS & = & 69.443~954~78^\circ
      \end{array}$

      In $\Delta KSQ$,

      $\begin{array}{rcl}
      \tan \angle KQS & = & \dfrac{KS}{QS} \\
      & = & \dfrac{7-(-48)}{16-(-32)} \\
      \angle KQS & = & 48.887~909~56^\circ
      \end{array}$

      Since $\angle KQS \neq \dfrac{1}{2}\angle PQS$, then $KQ$ is not the angle bisector of $\angle PQR$. Therefore, the centre of $C$ and the in-centre of $\Delta PQR$ are not the same point.

Same Topic:

Default Thumbnail2006-I-16 Default Thumbnail2006-II-50 Default Thumbnail2008-I-17 Default Thumbnail2011-II-51
2011, HKCEE, Paper 1 Tags:Equations of Circle

Post navigation

Previous Post: 2011SP-II-45
Next Post: 2010-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme