Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2019-I-14

Posted on 16-06-2021 By app.cch No Comments on 2019-I-14
Ans: (b) (i) $(\sqrt{2}-1)\ell$ (ii) Yes

    1. In $\Delta BCG$ and $\Delta CBF$,

      $\begin{array}{rcll}
      BC & = & CB & \text{(common side)} \\
      \angle CBG & = & \angle BCF & \text{(alt. $\angle$s, $BG//EC$)} \\
      \angle BCG & = & \angle CBF & \text{(alt. $\angle$s, $CG//DB$)} \\
      \end{array}$

      Therefore, $\Delta BCG \cong \Delta CBF\ \text{(A.S.A.)}$.

    2. Since $ABCD$ is a square, we have $AD// BC$ and $AB // DC$ (property of square).

      In $\Delta BCF$ and $\Delta DEF$,

      $\begin{array}{rcll}
      \angle BFC & = & \angle DFE & \text{(vert. opp. $\angle$s)} \\
      \angle BCF & = & \angle DEF & \text{(alt. $\angle$s, $AD//BC$)} \\
      \angle CBF & = & \angle EDF & \text{(alt. $\angle$s, $AD//BC$)}
      \end{array}$

      Therefore, $\Delta BCF \sim \Delta DEF\ \text{(A.A.A.)}$.

    1. In $\Delta BCF$,

      $\begin{array}{rcll}
      \angle BFC & = & \angle CGB & \text{(corr. $\angle$s, $\cong \Delta$s)} \\
      \angle BCF & = & \angle BGC & \text{(given)} \\
      \angle BCF & = & \angle BFC \\
      BF & = & BC & \text{(sides opp. eq. $\angle$s)}
      \end{array}$

      In $\Delta BCD$,

      $\begin{array}{rcll}
      \angle BDC & = & 45^\circ & \text{(property of square)} \\
      \sin \angle BDC & = & \dfrac{BC}{BD} \\
      \sin 45^\circ & = & \dfrac{BC}{BF + DF} \\
      \dfrac{1}{\sqrt{2}} & = & \dfrac{\ell}{\ell + DF} \\
      \ell + DF & = & \sqrt{2} \ell \\
      DF & = & (\sqrt{2} – 1) \ell
      \end{array}$

    2. Since $\Delta BCF \sim \Delta DEF$, we have

      $\begin{array}{rcll}
      \dfrac{BC}{DE} & = & \dfrac{BF}{DF} & \text{(corr. sides, $\sim \Delta$s)} \\
      \dfrac{\ell}{DE} & = & \dfrac{\ell}{(\sqrt{2} – 1) \ell} \\
      DE & = & (\sqrt{2} – 1) \ell
      \end{array}$

      Therefore, we have

      $\begin{array}{rcl}
      AE & = & AD – DE \\
      & = & \ell – (\sqrt{2} – 1) \ell \\
      & = & (2 – \sqrt{2}) \ell \\
      & = & 0.585\ 786\ 437 \ell \\
      \end{array}$

      By the result of (b)(i), we have

      $\begin{array}{rcl}
      DF & = & (\sqrt{2} – 1) \ell \\
      DF & = & 0.414\ 213\ 562 \ell \\
      & < & 0.585\ 786\ 437 \ell \\ & = & AE \end{array}$

      Therefore, I agree with the claim.

Same Topic:

Default Thumbnail2019-II-17 Default Thumbnail2019-II-18 Default Thumbnail2019-II-20 Default Thumbnail2019-II-41
2019, HKDSE-MATH, Paper 1 Tags:Basic Geometry

Post navigation

Previous Post: 2020-II-45
Next Post: 2018-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme