Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2009-I-17

Posted on 16-06-202121-06-2023 By app.cch No Comments on 2009-I-17
Ans: (a) (i) $22.3\text{ m}$ (ii) $48.5^\circ$ (iii) $337\text{ cm}^2$ (iv) $6.60\text{ cm}$ (b) No

    1. By applying the cosine law to $\Delta BCD$, we have

      $\begin{array}{rcl}
      CD^2 & = & BD^2 + BC^2 -2 (BD)(BC)\cos \angle ABC \\
      & = & 6^2 + 25^2 -2(6)(25)\cos 57^\circ \\
      & = & 497.608~289~5 \\
      CD & = & 22.307~135~39 \text{ cm} \\
      & \approx & 22.3\text{ cm}
      \end{array}$

    2. By applying the sine law to $\Delta ABC$, we have

      $\begin{array}{rcl}
      \dfrac{BC}{\sin \angle BAC} & = & \dfrac{AC}{\sin ABC} \\
      \dfrac{25}{\sin \angle BAC} & = & \dfrac{28}{\sin 57^\circ} \\
      \sin \angle BAC & = & \dfrac{25\sin57^\circ}{28} \\
      & = & 0.748~813~007 \\
      \angle BAC & = & 48.487~661~26^\circ \\
      & \approx & 48.5^\circ
      \end{array}$

    3. $\begin{array}{cl}
      & \angle ACB \\
      = & 180^\circ – 57^\circ – 48.487~661~26^\circ \\
      = & 74.512~338~74^\circ
      \end{array}$

      Hence, the area of $\Delta ABC$

      $\begin{array}{cl}
      = & \dfrac{1}{2} \times AC \times BC \times \sin \angle ACB \\
      = & \dfrac{1}{2} \times 28 \times 25 \times \sin 74.512~338~74^\circ \\
      = & 337.290~793~4 \text{ cm}^2 \\
      \approx & 337 \text{ cm}^2
      \end{array}$

    4. Let $h \text{ cm}$ be the shortest distance from $E$ to the horizontal ground. Note that the shortest distance from $E$ to the horizontal ground is the height of the tetrahedron $ABCE$ with base $\Delta ABC$. Then the volume of the tetrahedron $ABCE$

      $\begin{array}{cl}
      = & \dfrac{1}{3} \times h \times 337.290~793~4 ~\ldots \unicode{x2460}
      \end{array}$

      By applying the sine law to $\Delta ABC$, we have

      $\begin{array}{rcl}
      \dfrac{AB}{\sin \angle ACB} & = & \dfrac{AC}{\sin \angle ABC} \\
      \dfrac{AB}{\sin 74.512~338~74^\circ } & = & \dfrac{28}{\sin 57^\circ} \\
      AB & = & \dfrac{28 \sin 74.512~338~74^\circ }{\sin 57^\circ} \\
      & = & 32.173~852~88\text{ cm}
      \end{array}$

      Note that $CE$ is perpendicular to the thin metal plate $ABE$, therefore $\angle CEB = \angle CED = \angle CEA = 90^\circ$. By applying the Pythagoras Theorem to $\Delta BCE$, we have

      $\begin{array}{rcl}
      CE^2 & = & BC^2 – BE^2 \\
      CE & = & \sqrt{25^2 – 24^2} \\
      & = & 7 \text{ cm}
      \end{array}$

      Also by applying the Pythagoras Theorem to $\Delta ACE$, we have

      $\begin{array}{rcl}
      AE^2 & = & AC^2 – CE^2 \\
      AE & = & \sqrt{28^2 – 7^2} \\
      & = & \sqrt{735}\text{ cm}
      \end{array}$

      By applying Heron’s formula to $\Delta ABE$, we have

      $\begin{array}{rcl}
      s & = & \dfrac{AB + BE + AE}{2} \\
      & = & 41.642~368~15 \text{ cm}
      \end{array}$

      Therefore, the area of $\Delta ABE$

      $\begin{array}{cl}
      = & \sqrt{ s (s-AB)(s-BE)(s-AE)} \\
      = & 317.937~742~9 \text{ cm}^2
      \end{array}$

      Note that $CE$ is the height of the tetrahedron $ABCE$ with base $\Delta ABE$. Hence, the volume of the tetrahedron $ABCE$

      $\begin{array}{cl}
      = & \dfrac{1}{3} \times 317.937~742~9 \times 7 \\
      = & 741.854~733~5 \text{ cm}^3 ~\ldots \unicode{x2461}
      \end{array}$

      By comparing $\unicode{x2460}$ and $\unicode{x2461}$, we have

      $\begin{array}{rcl}
      \dfrac{1}{3} \times h \times 337.290~793~4 & = & 741.~854~733~5 \\
      h & = & 6.598~354~429\text{ cm} \\
      & \approx & 6.60\text{ cm}
      \end{array}$

      Therefore, the required distance is $6.60\text{ cm}$.

  1. By applying the Pythagoras Theorem to $\Delta BDE$, we have

    $\begin{array}{rcl}
    DE^2 & = & CD^2 – CE^2 \\
    DE & = & \sqrt{22.307~135~39^2 – 7^2} \\
    & = & 21.180~375~1\text{ cm}
    \end{array}$

    Let $\theta$ be the angle between $DE$ and the horizontal ground. Hence, we have

    $\begin{array}{rcl}
    \sin \theta & = & \dfrac{h}{DE} \\
    & = & \dfrac{6.598~354~429}{21.180~375~1} \\
    \theta & = & 18.151~551~2^\circ
    \end{array}$

    Consider $\Delta CDE$,

    $\begin{array}{rcl}
    \tan \angle CDE & = & \dfrac{CE}{DE} \\
    & = & \dfrac{7}{21.180~375~1} \\
    \angle CDE & = & 18.288~442~66^\circ \\
    & \neq & \theta
    \end{array}$

    Therefore, the claim is not agree.

Same Topic:

Default Thumbnail2006-I-17 Default Thumbnail2006-II-45 Default Thumbnail2009-II-47 Default Thumbnail2010-II-28
2009, HKCEE, Paper 1 Tags:3D Problems

Post navigation

Previous Post: 2010-II-54
Next Post: 2008-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme