Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2007-I-17

Posted on 16-06-202121-06-2023 By app.cch No Comments on 2007-I-17
Ans: (b) (i) $(-7,0)$ (ii) $(x+7)^2+(y-9)^2=9^2$

    1. Since $I$ is the in-centre of $\Delta ABD$,

      $\angle ABG = \angle DBG$.

      In $\Delta ABG$ and $\Delta DBG$,

      $\begin{array}{ll}
      AB=BD & \text{(given)} \\
      BG=BG & \text{(common side)} \\
      \angle ABG=\angle DBG & \text{(proved)}
      \end{array}$

      $\therefore \Delta ABG \cong \Delta DBG$. (S.A.S.)

    2. Since $I$ is the in-centre of $\Delta ABD$,

      $\angle BAE = \angle IAG$.

      Since $\Delta ABG \cong \Delta DBG$,

      $\begin{array}{ll}
      \angle BGA= \angle BGD & \text{(corr. sides, $\cong\Delta$s)} \\
      \therefore \angle IGA=90^\circ &
      \end{array}$

      Since $AC$ is the diameter of the semi-circle $ABC$,

      $\begin{array}{ll}
      \angle ABC = 90^\circ & \text{($\angle$ in semi circle)}
      \end{array}$

      In $\Delta AGI$ and $\Delta ABE$,

      $\begin{array}{ll}
      \angle IAG=\angle EAB & \text{(proved)} \\
      \angle IGA = \angle EBA = 90^\circ & \text{(proved)}
      \end{array}$

      $\begin{array}{rll}
      \angle GAI & = 180^\circ – \angle IAG – \angle IGA & \text{($\angle$ sum of $\Delta$)} \\
      & = 180^\circ – \angle EAB – \angle EBA & \text{(proved)} \\
      & = \angle BAE & \text{($\angle$ sum of $\Delta$)}
      \end{array}$

      $\therefore \Delta AGI \sim \Delta ABE$. (A.A.A.)

      Hence, we have

      $\begin{array}{rcll}
      \dfrac{AB}{AG} & = & \dfrac{BE}{GI} & \text{(corr. sides, $\sim\Delta$s)} \\
      \dfrac{GI}{AG} & = & \dfrac{BE}{AB} &
      \end{array}$

    1. Note that $y$-axis is the axis of symmetry of semi-circle $ABC$. Then $A=(-25,0)$. By the result of (a)(i), $AG=DG$, i.e. $G$ is the mid-point of $AD$. Hence, we have

      $\begin{array}{rcl}
      G & = & \left( \dfrac{-25+ 11}{2}, 0 \right) \\
      & = & (-7,0)
      \end{array}$

    2. Let $I=(-7,y)$. By the result of (a)(ii), we have

      $\begin{array}{rcl}
      \dfrac{GI}{AG} & = & \dfrac{BE}{AB} \\
      \dfrac{GI}{AG} & = & \dfrac{1}{2} \\
      AG & = & 2GI \\
      -7 – (-25) & = & 2y \\
      y & = & 9
      \end{array}$

      $\therefore I=(-7,9)$.

      Note that $AD$ is the tangent at $G$ of the inscribed circle of $\Delta ABD$ and $IG \perp AD$, then $IG$ is a radius of the inscribed circle of $\Delta ABD$. Hence, the equation of the inscribed circle of $\Delta ABD$ is

      $\begin{array}{rcl}
      (x-(-7))^2 + (y-9)^2 & = & (9-0)^2 \\
      (x+7)^2 + (y-9)^2 & = & 9^2
      \end{array}$

Same Topic:

Default Thumbnail2007-II-51 Default Thumbnail2007-II-52 Default Thumbnail2008-I-17 Default Thumbnail2012PP-I-14
2007, HKCEE, Paper 1 Tags:Equations of Circle, Properties of Circles

Post navigation

Previous Post: 2008-II-54
Next Post: 2006-I-02

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme