Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2018-I-11

Posted on 16-06-2021 By app.cch No Comments on 2018-I-11
Ans: (a) (i) $1$ (ii) $8$ (b) (i) $3$ (ii) $19$ (c) $9$

    1. Since $k$ is a positive integer, then $k > 0$. The least possible value of $k$ is $1$.
    2. Since the mode of the distribution is $2$, then the frequencies of other data must less than $9$. The greatest possible value of $k$ is $8$.
  1. Since the median of the distribution is $2$, then $2$ must be at the middle of the data.
    1. If $k \le 2$, the data at the middle will become $3$. Hence, the least possible value of $k$ is $3$.
    2. If $k \ge 20$, the data at the middle will become $1$. Hence, the least possible value of $k$ is $19$.
  2. For the mean of the distribution is $2$, we have

    $\begin{array}{rcl}
    \dfrac{0\times k + 1 \times 2 + 2 \times 9 + 3 \times 6 + 4 \times 7}{K + 2 + 9 + 6 + 7} & = & 2\\
    \dfrac{66}{k+24} & = & 2 \\
    2k + 48 & = & 66 \\
    k & = & 9
    \end{array}$

Same Topic:

Default Thumbnail2018-I-10 Default Thumbnail2018-II-29 Default Thumbnail2018-II-44 Default Thumbnail2018-II-45
2018, HKDSE-MATH, Paper 1 Tags:Statistics

Post navigation

Previous Post: 2019-II-45
Next Post: 2017-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme