Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2018-I-13

Posted on 16-06-2021 By app.cch No Comments on 2018-I-13
Ans: (b) (i) $48\text{ cm}$ (ii) $750\text{ cm}^2$ (iii) No

  1. In $\Delta ABE$ and $\Delta ECD$,

    $\begin{array}{rcll}
    \angle ABE + \angle ECD & = & 180^\circ & \text{(alt. $\angle$s, $AB//DC$)} \\
    90^\circ + \angle ECD & = & 180^\circ & \text{(given)} \\
    \angle ECD & = & 90^\circ \\
    \angle ABE & = & \angle ECD
    \end{array}$

    Also,

    $\begin{array}{rcll}
    \angle BAE + \angle ABE & = & \angle AEC & \text{(ext. $\angle$ of $\Delta$)} \\
    \angle BAE + \angle ABE & = & \angle AED + \angle DEC \\
    \angle BAE + 90^\circ & = & 90^\circ + \angle DEC & \text{(given)}\\
    \angle BAE & = & \angle DEC
    \end{array}$

    Hence, we have

    $\begin{array}{rcll}
    \angle AEB & = & 180^\circ – \angle ABE – \angle BAE & \text{($\angle$ sum of $\Delta$)} \\
    & = & 180^\circ – \angle ECD – \angle CDE & \text{(proved)} \\
    & = & \angle EDC & \text{($\angle$ sum of $\Delta$)}
    \end{array}$

    $\therefore \Delta ABE \sim \Delta ECD \ \text{(A.A.A.)}$.

    1. Since $\Delta ABE \sim \Delta ECD$, we have

      $\begin{array}{rcll}
      \dfrac{AB}{EC} & = & \dfrac{AE}{ED} & \text{(corr. sides, $\sim \Delta$)} \\
      \dfrac{15}{36} & = & \dfrac{25}{ED} \\
      ED & = & 60 \text{ cm}
      \end{array}$

      Since $\angle ECD = 90^\circ$ (proved in (a)), we have

      $\begin{array}{rcll}
      CD^2 & = & ED^2 – EC^2 & \text{(Pyth. Thm.)} \\
      CD^2 & = & 60^2 – 36^2 \\
      CD & = & 48\text{ cm}
      \end{array}$

    2. It is given that $\angle AED = 90^\circ$, then the area of $\Delta ADE$

      $\begin{array}{cl}
      = & \dfrac{1}{2} \times AE \times ED \\
      = & \dfrac{1}{2} \times 25 \times 60 \\
      = & 750\text{ cm}^2
      \end{array}$

    3. It is given that $\angle AED = 90^\circ$, then we have

      $\begin{array}{rcll}
      AD^2 & = & AE^2 + ED^2 & \text{(Pyth. Thm.)} \\
      AD^2 & = & 25^2 + 60^2 \\
      AD & = & 65\text{ cm}
      \end{array}$

      Let $h\text{ cm}$ be the height with respect to the base $AD$. Note that $h\text{ cm}$ is the shortest distance from $E$ to $AD$. By the result of (b)(ii), we have

      $\begin{array}{rcl}
      \dfrac{1}{2} \times h \times AD & = & 750 \\
      \dfrac{1}{2} \times h \times 65 & = & 750 \\
      h & = & 23.076\ 923\ 08 \\
      h & > & 23
      \end{array}$

      Since the shortest distance from $E$ to $AD$ is larger that $23\text{ cm}$, then there is no point $F$ lying on $AD$ such that th distance between $E$ and $F$ is less than $23\text{ cm}$.

Same Topic:

Default Thumbnail2016-II-24 Default Thumbnail2018-II-18 Default Thumbnail2018-II-19 Default Thumbnail2018-II-20
2018, HKDSE-MATH, Paper 1 Tags:Basic Geometry

Post navigation

Previous Post: 2019-II-45
Next Post: 2017-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme