Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2018-I-19

Posted on 16-06-202114-06-2023 By app.cch No Comments on 2018-I-19
Ans: (a) $C: (x – 8)^2 + (y – 2)^2 = r^2$, $r^2 = \dfrac{64k^2 – 496k + 961}{k^2 + 25}$ (b) (i) $5$ (ii) Yes

  1. The equation of $C$ is

    $\begin{array}{rcl}
    (x-8)^2 + (y-2)^2 & = & r^2
    \end{array}$

    Consider

    $\left\{\begin{array}{ll}
    (x-8)^2 + (y-2)^2 = r^2 & \ldots \unicode{x2460} \\
    kx – 5y – 21 = 0 & \ldots \unicode{x2461}
    \end{array}\right.$

    From $\unicode{x2461}$, we have

    $\begin{array}{rcl}
    kx – 5y – 21 & = & 0 \\
    5y & = & kx – 21 \\
    y & = & \dfrac{kx – 21}{5}\ \ldots \unicode{x2462}
    \end{array}$

    Sub. $\unicode{x2462}$ into $\unicode{x2460}$, we have

    $\begin{array}{rcl}
    (x-8)^2 + (\dfrac{kx -21}{5} – 2)^2 & = & r^2 \\
    x^2 -16x + 64 + \left(\dfrac{kx-21}{5}\right)^2 – \dfrac{4(kx-21)}{5} + 4 – r^2 & = & 0 \\
    25x^2 -400 x + 1600 + k^2x^2 -42kx + 441 -20kx +420 + 100 – 25r^2 & = & 0 \\
    (k^2 + 25)x^2 + (-400 – 62k)x + (2561 -25r^2) & = & 0
    \end{array}$

    Since $L$ is a tangent to $C$, we have

    $\begin{array}{rcl}
    \Delta & = & 0 \\
    (-400 – 62k)^2 – 4(k^2 + 25)(2561 – 25r^2) & = & 0 \\
    4(k^2 + 25)(2561 – 25r^2) & = & (-400 – 62k)^2 \\
    2561 – 25r^2 & = & \dfrac{(400 + 62k)^2}{4(k^2 + 25)} \\
    25r^2 & = & 2561 – \dfrac{(200 + 31k)^2}{k^2 + 25} \\
    r^2 & = & \dfrac{2561k^2 + 64025 – 40000 – 12400k – 961k^2}{25(k^2 + 25)} \\
    r^2 & = & \dfrac{64k^2 – 496k + 961}{k^2 + 25}
    \end{array}$

    1. Note that $L$ passes through $D$. Therefore, we have

      $\begin{array}{rcl}
      k(18) – 5(39) – 21 & = & 0 \\
      18k & = & 216 \\
      k & = & 12
      \end{array}$

      Sub. $k=12$ into the result of (a), we have

      $\begin{array}{rcl}
      r^2 & = & \dfrac{64k^2 – 496k + 961}{k^2 + 25} \\
      r^2 & = & \dfrac{64(12)^2 – 496(12) + 961}{(12)^2 + 25} \\
      r^2 & = & 25 \\
      r & = & 5
      \end{array}$

    2. Sketch the graph below according to the information of the question.

      Note that the $y$ intercept of $L$ is $\dfrac{-21}{5}$. Then, the coordinates of $E$ are $(0, \dfrac{-21}{5})$.

      Let $I(8,2)$ be the centre of $C$. Note that $I$ is the in-centre of $\Delta DEF$.

      Consider $\Delta DGI$. Note that $GI$ is a radius of the circle and $\angle IGD = 90^\circ$.

      $\begin{array}{rcl}
      DI & = & \sqrt{(18-8)^2 + (39-2)^2} \\
      DI & = & \sqrt{1469}
      \end{array}$

      Therefore, we have

      $\begin{array}{rcl}
      \sin \angle EDI & = & \dfrac{IG}{DI} \\
      \sin \angle EDI & = & \dfrac{5}{\sqrt{1469}} \\
      \angle EDI & = & 7.495\ 857\ 64^\circ
      \end{array}$

      Since $I$ is the in-centre of $\Delta DEF$, then we have

      $\begin{array}{rcl}
      \angle EDF & = & 2 \times \angle EDI \\
      \angle EDF & = & 14.991\ 715\ 28^\circ
      \end{array}$

      Consider $\Delta EGI$. Note that $GI$ is a radius of the circle and $\angle IGE = 90^\circ$.

      $\begin{array}{rcl}
      EI & = & \sqrt{(0-8)^2 + (\dfrac{-21}{5}-2)^2} \\
      EI & = & \dfrac{\sqrt{2561}}{5}
      \end{array}$

      Therefore, we have

      $\begin{array}{rcl}
      \sin \angle DEI & = & \dfrac{IG}{EI} \\
      \sin \angle DEI & = & \dfrac{5}{\frac{\sqrt{2561}}{5}} \\
      \angle DEI & = & 29.604\ 450\ 75^\circ
      \end{array}$

      Since $I$ is the in-centre of $\Delta DEF$, then we have

      $\begin{array}{rcl}
      \angle DEF & = & 2 \times \angle DEI \\
      \angle DEF & = & 59.208\ 901\ 49^\circ
      \end{array}$

      Therefore, $\angle DFE$

      $\begin{array}{cl}
      = & 180^\circ -\angle EDF – \angle DEF \\
      = & 180^\circ – 14.991\ 715\ 28^\circ – 59.208\ 901\ 49^\circ \\
      = & 105.799\ 383\ 2^\circ \\
      > & 90^\circ
      \end{array}$

      Therefore, $\Delta DEF$ is an obtuse-angled triangle.

Same Topic:

Default Thumbnail2018-II-27 Default Thumbnail2019-II-37 Default Thumbnail2021-I-19 Default Thumbnail2022-I-19
2018, HKDSE-MATH, Paper 1 Tags:Equations of Circle

Post navigation

Previous Post: 2019-II-45
Next Post: 2017-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme