答案:B
$\begin{array}{rcl}
(\log_\pi x)^2 -10\log_\pi x + 24 & = & \log_\pi x \\
(\log_\pi x)^2 -11\log_\pi x + 24 & = & 0 \\
(\log_\pi x – 3)(\log_\pi – 8) & = & 0
\end{array}$
$\begin{array}{rcl}
(\log_\pi x)^2 -10\log_\pi x + 24 & = & \log_\pi x \\
(\log_\pi x)^2 -11\log_\pi x + 24 & = & 0 \\
(\log_\pi x – 3)(\log_\pi – 8) & = & 0
\end{array}$
所以,$\log_\pi x = 3$ 或 $\log_\pi x = 8$。
由此,$x = \pi^3$ 或 $x = \pi^8$。.
由於 $\alpha$ 及 $\beta$ 為該方程的根,所以 $\alpha \beta$
$\begin{array}{cl}
= & \pi^3 \times \pi^8 \\
= & \pi^{11}
\end{array}$