Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2017-II-40

Posted on 16-06-202115-06-2023 By app.cch No Comments on 2017-II-40
Ans: B
Join $AC$.

Since $DE$ is the tangent to the circle at $A$, then

$\begin{array}{rcll}
\angle BCA & = & \angle BAD & \text{($\angle$s in alt. segment)}\\
\angle BCA & = & 68^\circ
\end{array}$

Consider $\Delta OAC$.

$\begin{array}{rcl}
\angle OCA & = & \angle BCA – \angle BCO \\
\angle OCA & = & 68^\circ -26^\circ \\
\angle OCA & = & 42^\circ
\end{array}$

Since $OA = OC$ (radii), then $\angle OAC = \angle OCA$ (base $\angle$s, isos. $\Delta$). Hence, we have

$\begin{array}{rcll}
\angle AOC & = & 180^\circ – \angle OAC – \angle OCA & \text{($\angle$ sum of $\Delta$)} \\
\angle AOC & = & 180^\circ – 42^\circ – 42^\circ \\
\angle AOC & = & 96^\circ
\end{array}$

Hence, we have

$\begin{array}{rcll}
\angle ABC & = & \dfrac{1}{2} \times \angle AOC & \text{($\angle$ at centre twice $\angle$ at $\unicode{x2299}^{ce}$)} \\
\angle ABC & = & \dfrac{1}{2} \times 96^\circ \\
\angle ABC & = & 48^\circ
\end{array}$

Same Topic:

Default Thumbnail2013-II-19 Default Thumbnail2017-II-21 Default Thumbnail2020-I-18 Default Thumbnail2021-II-39
2017, HKDSE-MATH, Paper 2 Tags:Properties of Circles

Post navigation

Previous Post: 2018-II-45
Next Post: 2016-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme