Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2016-I-20

Posted on 16-06-202115-06-2023 By app.cch No Comments on 2016-I-20
Ans: (b) (i) $x^2+y^2-112x+66y=0$ (ii) Yes

  1. Note that $P$, $I$ and $J$ are collinear. Let $R$ be the intersection point of $PJ$ and $OQ$.

    Consider $\Delta PRO$ and $\Delta PRQ$.

    Since $I$ is the in-centre of $\Delta OPQ$, then $PI$ is the angle bisector of $\angle OPQ$. Hence, we have

    $\begin{array}{ll}
    \angle RPO = \angle RPQ & \text{(in-centre)}
    \end{array}$

    Since $J$ is the circumcentre of $\Delta OPQ$, then $PJ$ is the perpendicular bisector of $OQ$. Hence, we have

    $\begin{array}{ll}
    \angle PRO = \angle PRQ = 90^\circ & \text{(circumcentre)} \\
    RO = RQ & \text{(circumcentre)}
    \end{array}$

    Therefore, $\Delta PRO \cong \Delta PRQ$ (A.A.S). Hence, we have

    $\begin{array}{ll}
    OP = PQ & \text{(corr. sides, $\cong \Delta$)}
    \end{array}$

    1. Refere to the figure below.

      Let $P=(a, 19)$. By the result of (a), $OP=PQ$. Hence, we have

      $\begin{array}{rcl}
      \sqrt{(a-0)^2 + (19-0)^2} & = & \sqrt{(a-40)^2 + (19-30)^2} \\
      a^2 + 361 & = & a^2 -80a + 1721 \\
      80a & = & 1360 \\
      a & = & 17
      \end{array}$

      Let $x^2+y^2+Dx+Ey+F=0$ be the equation of $C$. Since $C$ passes through $O$, $P$ and $Q$, we have

      $\left\{ \begin{array}{ll}
      (0)^2 + (0)^2 +D(0) + E(0) + F =0 & \ldots \unicode{x2460} \\
      17^2 + 19^2 + D(17) + E(19) + F = 0 & \ldots \unicode{x2461} \\
      40^2 + 30^2 +D(40) + E(30) + F = 0 & \ldots \unicode{x2462}
      \end{array} \right.$

      From $\unicode{x2460}$, we have $F=0$. Then after simplifying $\unicode{x2461}$ and $\unicode{x2462}$, we have

      $\left\{ \begin{array}{ll}
      17D + 19E + 650 =0 & \ldots \unicode{x2463} \\
      40D + 30E + 2500 = 0 & \ldots \unicode{x2464}
      \end{array} \right.$

      $\unicode{x2463} \times 30 – \unicode{x2464} \times 19$, we have

      $\begin{array}{rcl}
      -250D -28000 & = & 0 \\
      D & = & -112
      \end{array}$

      Sub. $D=-112$ into $\unicode{x2463}$, we have

      $\begin{array}{rcl}
      17(-112) + 19E + 650 & = & 0 \\
      19E & = & 1254 \\
      E & = & 66
      \end{array}$

      Hence, the equation of $C$ is $x^2 +y^2 -112x +66y=0$.

    2. Refer to the figure below.

      Let $y=\dfrac{3}{4}x + c$ be the tangent to $C$ with slope $\dfrac{3}{4}$. Sub. $y= \dfrac{3}{4}x +c$ into the equation of $C$, we have

      $\begin{array}{rcl}
      x^2 + (\dfrac{3}{4}x+c)^2 -112x +66(\dfrac{3}{4}x+c) & = & 0 \\
      x^2 + \dfrac{9}{16}x^2 + \dfrac{3c}{2}x +c^2 -112x + \dfrac{99}{2} x + 66c & = & 0 \\
      16x^2 + 9x^2 + 24cx + 16c^2 – 1792x + 792 x + 1056c & = & 0 \\
      25x^2 + (24c-1000)x + (16c^2 + 1056c) & = & 0
      \end{array}$

      Since $y=\dfrac{3}{4}x +c$ is a tangent to $C$, then we have

      $\begin{array}{rcl}
      \Delta & = & 0 \\
      (24c-1000)^2 – 4(25)(16c^2 +1056c) & = & 0 \\
      576c^2 – 48000c + 1000000 – 1600c^2 – 105600c & = & 0 \\
      1024c^2 + 153600c – 1000000 & = & 0 \\
      16c^2 + 2400c – 15625 & = & 0 \\
      (4c -25)(4c+625) & = & 0
      \end{array}$

      Therefore, $c=\dfrac{25}{4}$ or $c=\dfrac{-625}{4}$.

      Therefore, the equations of $L_1$ and $L_2$ are $y=\dfrac{3}{4}x + \dfrac{25}{4}$ and $y=\dfrac{3}{4}x -\dfrac{625}{4}$ respectively. Hence, the coordinates of $S$, $T$, $U$ and $V$ are $(\dfrac{-25}{3},0)$, $(0,\dfrac{25}{4})$, $(\dfrac{625}{3},0)$ and $(0,\dfrac{-625}{4})$ respectively.

      Note that the height of the trapezium $STUV$ is the diameter of the circle $C$. Then the height of the trapezium $STUV$

      $\begin{array}{cl}
      = & \sqrt{(\dfrac{112}{2})^2 + (\dfrac{66}{2})^2 – 0} \\
      = & 65
      \end{array}$

      Therefore, the area of the trapezium $STUV$

      $\begin{array}{cl}
      = & \dfrac{2\times 65}{2} \left[ \sqrt{(\dfrac{-25}{3}-0)^2 + (0-\dfrac{25}{4})^2} + \sqrt{(\dfrac{625}{3} – 0)^2 + (0- \dfrac{-625}{4})^2} \right] \\
      = & \dfrac{105625}{6} \\
      > & 17000
      \end{array}$

      Therefore, the claim is correct.

Same Topic:

Default Thumbnail2016-II-27 Default Thumbnail2016-II-41 Default Thumbnail2021-I-19 Default Thumbnail2022-I-19
2016, HKDSE-MATH, Paper 1 Tags:Equations of Circle

Post navigation

Previous Post: 2017-II-45
Next Post: 2015-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme