Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2021-II-19

Posted on 29-06-202329-06-2023 By app.cch No Comments on 2021-II-19
Ans: D

I is true. Since $ABCD$ is a rectangle, then $AB\text{//}DC$. Hence, we have

$\begin{array}{rcll}
\angle ABE & = & \angle DGF & \text{(corr. $\angle$s, $AB$//$DC$)} \\
\end{array}$

In $\Delta ABE$,

$\begin{array}{rcll}
\angle AEB & = & 90^\circ & \text{(given)} \\
\angle ABE & = & 180^\circ -\angle AEB- \angle BAE & \text{($\angle$ sum of $\Delta$)} \\
\angle ABE & = & 180^\circ -90^\circ -\angle BAE & \\
\angle ABE & = & 90^\circ -\angle BAE
\end{array}$

Hence, $\angle DGF = 90^\circ -\angle BAE$.

On the other hand, since $ABCD$ is a rectangle, then we have

$\begin{array}{rcll}
\angle BAD & = & 90^\circ & \text{(properties of rectangle)} \\
\angle DAE & = & \angle BAD -\angle BAE & \\
\angle DAE & = & 90^\circ -\angle BAE & \\
\angle DAE & = & \angle ABE & \\
\angle DAE & = & \angle DGF
\end{array}$

II is true. In $\Delta BCE$ and $\Delta CGE$,

$\begin{array}{rcllll}
\angle BEC & = & \angle CEG & = & 90^\circ & \text{(given)} \\
\end{array}$

Also,

$\begin{array}{rcll}
\angle ABC & = & 90^\circ & \text{(properties of rectangle)} \\
\angle CBE & = & 90^\circ -\angle ABE \\
\angle ABE & = & \angle CGE & \text{(alt. $\angle$s, $AB$//$DC$)} \\
\angle GCE & = & 180^\circ -\angle CEG -\angle CGE & \text{($\angle$ sum of $\Delta$)} \\
\angle GCE & = & 180^\circ -90^\circ -\angle CGE & \\
\angle GCE & = & 90^\circ -\angle CGE \\
\angle GCE & = & 90^\circ -\angle ABE & \text{(proved)} \\
\angle DCE & = & \angle CBE & \text{(proved)}
\end{array}$

Hence, $\Delta BCE \sim \Delta CGE$ (A.A.).

III is true. In $\Delta BCE$ and $\Delta FCE$,

$\begin{array}{rcllll}
\angle CEF & = & \angle CEB & = & 90^\circ \\
CE & = & CE & & & \text{(common side)} \\
CF & = & AD & & & \text{(given)} \\
AD & = & CB & & &\text{(properties of rectangle)} \\
CF & = & CB \\
\end{array}$

Hence, $\Delta BCE \cong \Delta FCE$ (R.H.S.).

Same Topic:

Default Thumbnail2018-I-13 Default Thumbnail2021-I-08 Default Thumbnail2021-II-18 Default Thumbnail2021-II-21
2021, HKDSE-MATH, Paper 2 Tags:Basic Geometry

Post navigation

Previous Post: 2021-II-18
Next Post: 2021-II-20

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme