Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2022-I-16

Posted on 05-07-202305-07-2023 By app.cch No Comments on 2022-I-16
Ans: (a) $(-2k,4k^2+8)$ (b) $(-k,5k^2+10)$

  1. $\begin{array}{rcl}
    g(x) & = & 3x^2+12kx+16k^2+8 \\
    g(x) & = & 3(x^2 +4kx) +16k^2 +8 \\
    g(x) & = & 3(x^2 +4kx +(2k)^2 -(2k)^2) +16k^2 +8 \\
    g(x) & = & 3[(x+2k)^2 -4k^2] +16k^2 +8 \\
    g(x) & = & 3(x+2k)^2 -12k^2 +16k^2 +8 \\
    g(x) & = & 3(x+2k)^2 +4k^2 +8
    \end{array}$

    Therefore, the coordinates of the vertex are $(-2k, 4k^2 +8)$.

  2. Sketch the graph according to the question. For sketching the graph, we assume $k=\dfrac{-3}{2}$.

    Note that the graph of $y=2g(-x)$ is obtained by first reflecting the graph of $y=g(x)$ along the $y$-axis, and then enlarging to $2$ times of the original along the $y$-axis.

    Therefore, the coordinates of $B$ are $(2k, 8k^2+16)$.

    Note also that $\Delta OBM$ and $\Delta OAM$ are triangles with the same height with respect to the base $BM$ and $AM$ respectively. Therefore, we have

    $\begin{array}{cl}
    & AM : BM \\
    = & \text{area of $\Delta OAM$} : \text{area of $\Delta OBM$} \\
    = & 1 : 3
    \end{array}$

    Hence, the coordinates of $M$

    $\begin{array}{cl}
    = & \left( \dfrac{3(-2k)+1(2k)}{3+1}, \dfrac{3(4k^2+8)+1(8k^2+16)}{3+1} \right) \\
    = & \left(-k, \dfrac{20k^2+40}{4} \right) \\
    = & (-k, 5k^2+10)
    \end{array}$

Same Topic:

Default Thumbnail2014-II-05 Default Thumbnail2016-I-18 Default Thumbnail2016-II-37 Default Thumbnail2022-I-10
2022, HKDSE-MATH, Paper 1 Tags:Quadratic Equations and Functions, Transformations

Post navigation

Previous Post: 2022-I-15
Next Post: 2022-I-17

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme