答案:A
把該直線方程改寫為斜截式,可得
$\begin{array}{rcl}
mx +ny & = & 3 \\
ny & = & -mx +3 \\
y & = & \dfrac{-m}{n} x+\dfrac{3}{n}
\end{array}$
I 為正確。考慮該直線的 $y$ 截距,可得
$\begin{array}{rcl}
\dfrac{3}{n} & > & 0 \\
n & > & 0
\end{array}$
考慮該直線的斜率,可得
$\begin{array}{rcl}
\dfrac{-m}{n} & > & 0 \\
-m & > & 0 \\
m & < & 0
\end{array}$
II 為正確。考慮該直線的 $y$ 截距,可得
$\begin{array}{rcl}
\dfrac{3}{n} & < & 1 \\
3 & < & n \\
n & > & 3
\end{array}$
III 為不正確。考慮該直線的斜率,可得
$\begin{array}{rcl}
\dfrac{-m}{n} & < & \dfrac{1-0}{0-(-1)} \\
\dfrac{-m}{n} & < & 1 \\
-m & < & n \\
m+n & > & 0
\end{array}$