Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2023-II-21

Posted on 25-07-2023 By app.cch No Comments on 2023-II-21
Ans: C

A is not true. Consider $\Delta RTV$. It is given that $RT=RV$, then $\angle RTV = \angle RVT$.

If $RV\text{//}ST$, then $\angle RVT = \angle PTS =90^\circ$. It is impossible that $\angle RTV=\angle RVT=90^\circ$. Hence, $RV$ is not parallel to $ST$.

B may not be true. Sketch a graph according to the question.

From the sketch, it is obviously that $\angle PTQ \neq \angle RTS$.

C must be true. In $\Delta PST$ and $\Delta UTQ$,

$\begin{array}{rcll}
\angle PQT & = & 90^\circ &\text{(properties of rectangle)} \\
\angle UQT & = & 180^\circ -\angle PQT & \text{(adj. $\angle$s on a st line)} \\
\angle UQT & = & 180^\circ -90^\circ \\
\angle UQT & = & 90^\circ \\
\angle UQT & = & \angle PTS &\text{(given)}
\end{array}$

Also,

$\begin{array}{rcll}
PS & \text{//} & QR & \text{(properties of rectangle)} \\
\angle PST & = & \angle UTQ & \text{(corr. $\angle$s, $PS$//$QR$)}
\end{array}$

$\therefore \Delta PST \sim \Delta UTQ$ (A.A.).

D may not be true. According to the sketch in option B, $\Delta PQT \not \cong \Delta TRS$.

Same Topic:

Default Thumbnail2023-I-08 Default Thumbnail2023-II-18 Default Thumbnail2023-II-19 Default Thumbnail2023-II-20
2023, HKDSE-MATH, Paper 2 Tags:Basic Geometry

Post navigation

Previous Post: 2023-II-20
Next Post: 2023-II-22

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme