設 $\angle TSU =x$。在 $\Delta STU$ 中,可得
$\begin{array}{rcll}
ST & = & TU & \text{(given)} \\
\angle TUS & = & \angle TSU & \text{(等腰三角形的底角)} \\
\angle TUS & = & x
\end{array}$
在 $\Delta SUV$ 中,
$\begin{array}{rcll}
\angle RSU & = & \angle SUV +\angle SVU & \text{(三角形的外角)} \\
\angle RSU & = & x+48^\circ
\end{array}$
在 $\Delta SUW$ 中,
$\begin{array}{rcll}
\angle RUS & = & \angle SWU +\angle USW & \text{(三角形的外角)} \\
\angle RUS & = & 32^\circ +x
\end{array}$
由於 $RSTU$ 為一圓內接四邊形,可得
$\begin{array}{rcll}
\angle RUT +\angle RST & = & 180^\circ & \text{(圓內接四邊形的對角)} \\
\angle RUS+\angle SUT +\angle RSU +\angle UST & = & 180^\circ \\
32^\circ +x+x+x+48^\circ+x & = & 180^\circ \\
4x & = & 100^\circ \\
x & = & 25^\circ
\end{array}$
由此,可得
$\begin{array}{rcl}
\angle RSU & = & 25^\circ+48^\circ \\
\angle RSU & = & 73^\circ
\end{array}$