Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2021-M2-12

Posted on 14-09-202314-09-2023 By app.cch No Comments on 2021-M2-12
Ans: (a) (i) $s=10$, $t=-18$ (ii) $270$ (iii) $2160$ (iv) $24$ (b) No

    1. Since $\av{AB}$ is parallel to $5\bv{i}-4\bv{j}-2\bv{k}$, then for some $\mu\in\mathbb{R}$, we have

      $\begin{array}{rcl}
      \av{AB} & = & \mu(5\bv{i}-4\bv{j}-2\bv{k}) \\
      \av{OB}-\av{OA} & = & 5\mu\bv{i}-4\mu\bv{j}-2\mu\bv{k} \\
      12\bv{i}-s\bv{j}-2\bv{k}-t\bv{i}-14\bv{j}-s\bv{k} & = & 5\mu\bv{i}-4\mu\bv{j}-2\mu\bv{k} \\
      (12-t)\bv{i}+(-s-14)\bv{j}+(-2-s)\bv{k} & = & 5\mu\bv{i}-4\mu\bv{j}-2\mu\bv{k} \\
      \end{array}$

      By comparing the components of both sides, we have

      $\left\{ \begin{array}{ll}
      12-t=5\mu & \ldots \unicode{x2460} \\
      -s-14=-4\mu & \ldots \unicode{x2461} \\
      -2-s=-2\mu & \ldots \unicode{x2462}
      \end{array}\right.$

      $\unicode{x2461}-2\times \unicode{x2462}$, we have

      $\begin{array}{rcl}
      -s-14-2(-2-s) & = & 0 \\
      s-10 & = & 0 \\
      s & = & 10
      \end{array}$

      Sub. $s=10$ into $\unicode{x2462}$, we have

      $\begin{array}{rcl}
      -2-10 & = & -2\mu \\
      \mu & = & 6
      \end{array}$

      Sub. $\mu=6$ into $\unicode{x2460}$, we have

      $\begin{array}{rcl}
      12-t & = & 5(6) \\
      12-t & = & 30 \\
      t & = & -18
      \end{array}$

    2. The required area

      $\begin{array}{cl}
      = & \dfrac{1}{2} \left| \av{AB} \times \av{AC} \right| \\
      = & \dfrac{1}{2} \left| (5\mu\bv{i}-4\mu\bv{j}-2\mu\bv{k})\times(\av{OC}-\av{OA})\right| \\
      = & \dfrac{1}{2} \left| (30\bv{i}-24\bv{j}-12\bv{k})\times(12\bv{i}-16\bv{j}+10\bv{k}+18\bv{i}-14\bv{j}-10\bv{k})\right| \\
      = & \dfrac{1}{2} \left|(30\bv{i}-24\bv{j}-12\bv{k})\times(30\bv{i}-30\bv{j}) \right| \\
      = & \dfrac{1}{2} \left| \begin{vmatrix} \bv{i} & \bv{j} & \bv{k} \\ 30 & -24 & -12 \\ 30 & -30 & 0 \end{vmatrix}\right| \\
      = & \dfrac{1}{2} \left| \begin{vmatrix} -24 & -12 \\ -30 & 0 \end{vmatrix} \bv{i} -\begin{vmatrix} 30 & -12 \\ 30 & 0 \end{vmatrix} \bv{j}+\begin{vmatrix} 30 & -24 \\ 30 & -30 \end{vmatrix} \bv {k}\right| \\
      = & \dfrac{1}{2}|-360\bv{i}-360\bv{j}-180\bv{k}| \\
      = & \dfrac{1}{2} \sqrt{(-360)^2+(-360)^2+(-180)^2} \\
      = & 270
      \end{array}$

    3. This is out of syllabus after 2022.

      Sketch a graph according to the question.

      The required volume

      $\begin{array}{cl}
      = & \dfrac{1}{6} \left|(\av{AB}\times \av{AC})\cdot\av{AD}\right| \\
      = & \dfrac{1}{6} \left| (-360\bv{i}-360\bv{j}-180\bv{j}) \cdot (\av{OD}-\av{OA})\right| \\
      = & \dfrac{1}{6} \left| (-360\bv{i}-360\bv{j}-180\bv{j}) \cdot (18\bv{i}+12\bv{j}+14\bv{k}+18\bv{i}-14\bv{j}-10\bv{k})\right| \\
      = & \dfrac{1}{6} \left| (-360\bv{i}-360\bv{j}-180\bv{j}) \cdot (36\bv{i}-2\bv{j}+4\bv{k})\right| \\
      = & \dfrac{1}{6} \left| (-360)(36)+(-360)(-2)+(-180)(4)\right| \\
      = & \dfrac{1}{6} |-12960| \\
      = & 2160
      \end{array}$

    4. Let $d$ be the shortest distance from $D$ to $\Pi$.

      $\begin{array}{rcl}
      \dfrac{1}{3} \times \text{area of }\Delta ABC \times d & = & \text{volume of the tetrahedron } ABCD \\
      \dfrac{1}{3} \times 270 \times d & = & 2160 \\
      d & = & 24
      \end{array}$

      Therefore, the shortest distance from $D$ to $\Pi$ is $24$.

  1. Let $M$ be the mid-point of $AB$. If $E$ is the circumcentre of $\Delta ABC$, then $EM$ must be the perpendicular bisector of $AB$.

    Consider $\av{DE}$, we have

    $\begin{array}{cl}
    & \av{DE} \\
    = & \left(\dfrac{\av{AD}\cdot(\av{AB}\times\av{AC})}{|\av{AB}\times\av{AC}|} \right) \times \dfrac{\av{AB}\times\av{AC}}{|\av{AB}\times\av{AC}|} \\
    = & d \times \dfrac{-360\bv{i}-360\bv{j}-180\bv{k}}{\sqrt{(-360)^2+(-360)^2+(-180)^2}} \\
    = & 24 \times \dfrac{-360\bv{i}-360\bv{j}-180\bv{k}}{540} \\
    = & -16\bv{i}-16\bv{j}-8\bv{k}
    \end{array}$

    Hence, we have

    $\begin{array}{rcl}
    \av{EA} & = & \av{DA}-\av{DE} \\
    \av{EA} & = & -36\bv{i}+2\bv{j}-4\bv{k} +16\bv{i}+16\bv{j}+8\bv{k} \\
    \av{EA} & = & -20\bv{i}+18\bv{j}+4\bv{k}
    \end{array}$

    Also, we have

    $\begin{array}{rcl}
    \av{EB} & = & \av{EA}+\av{AB} \\
    \av{EB} & = & -20\bv{i}+18\bv{j}+4\bv{k}+30\bv{i}-24\bv{j}-12\bv{k} \\
    \av{EB} & = & 10\bv{i}-6\bv{j}-8\bv{k}
    \end{array}$

    Consider $\Delta ABE$, by the section formula, we have

    $\begin{array}{rcl}
    \av{EM} & = & \dfrac{1}{2}\left(\av{EA}+\av{EB}\right) \\
    \av{EM} & = & \dfrac{1}{2}(-20\bv{i}+18\bv{j}+4\bv{k}+10\bv{i}-6\bv{j}-8\bv{k}) \\
    \av{EM} & = & \dfrac{1}{2}(-10\bv{i}+12\bv{j}-4\bv{k}) \\
    \av{EM} & = & -5\bv{i}+6\bv{j}-2\bv{k}
    \end{array}$

    Hence, we have

    $\begin{array}{cl}
    & \av{EM}\cdot\av{AB} \\
    = & (-5\bv{i}+6\bv{j}-2\bv{k})\cdot(30\bv{i}-24\bv{j}-12\bv{k}) \\
    = & (-5)(30)+(6)(-24)+(-2)(-12) \\
    = & -270 \\
    \neq & 0
    \end{array}$

    Therefore, $EM$ is not perpendicular to $AB$.

    Hence, $EM$ is not the perpendicular bisector of $AB$.

    Hence, $E$ is not the circumcentre of $\Delta ABC$.

Same Topic:

Default Thumbnail2021-M2-06 Default Thumbnail2021-M2-09 Default Thumbnail2022-M2-12 Default Thumbnail2023-M2-10
2021, HKDSE-M2 Tags:Vectors

Post navigation

Previous Post: 2021-M2-11
Next Post: 2020-M1-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme