- $M=(4,4)$
- The slope of $AB$
$\begin{array}{cl}
= & \dfrac{8-0}{12-(-4)} \\
= & \dfrac{1}{2}
\end{array}$Since $CM \perp AB$, then the slope of $CM$
$\begin{array}{cl}
= & -1 \div \text{the slope of $AB$} \\
= & -1 \div \dfrac{1}{2} \\
= & -2
\end{array}$Hence, the equation of $CM$ is
$\begin{array}{rcl}
y-4 & = & -2(x-4) \\
y-4 & = & -2x + 8 \\
2x + y -12 & = & 0
\end{array}$Sub. $y=0$ into the equation of $CM$, we have
$\begin{array}{rcl}
2x +(0) -12 & = & 0 \\
x & = & 6
\end{array}$Therefore, the coordinates of $C$ is $(6,0)$.
-
- The equation of $BD$ is
$\begin{array}{rcl}
\dfrac{y-8}{x-12} & = & \dfrac{0-8}{2-12} \\
\dfrac{y-8}{x-12} & = & \dfrac{4}{5} \\
5y – 40 & = & 4x – 48 \\
4x – 5y -8 & = & 0
\end{array}$ -
$\left\{ \begin{array}{ll} 2x+y-12=0 & \ldots \unicode{x2460} \\
4x-5y-8=0 & \ldots \unicode{x2461}
\end{array} \right.$$\unicode{x2461} – \unicode{x2460} \times 2$, we have
$\begin{array}{rcl}
-7y +16 & = & 0 \\
y & = & \dfrac{16}{7}
\end{array}$Sub. $y=\dfrac{16}{7}$ into $\unicode{x2460}$, we have
$\begin{array}{rcl}
2x + \dfrac{16}{7} -12 & = & 0 \\
x & = & \dfrac{34}{7}
\end{array}$Therefore, the coordinates of $K$ is $(\dfrac{34}{7}, \dfrac{16}{7})$.
Consider $\Delta AMC$ and $\Delta AKC$. If we treat $AC$ as the bases of $\Delta AMC$ and $\Delta AKC$, the heights of $\Delta AMC$ and $\Delta AKC$ are the $y$-coordinates of $M$ and $K$ respectively.
Hence, the area of $\Delta AMC :$ the area of $\Delta AKC$
$\begin{array}{cl}
= & \dfrac{1}{2} \times AC \times 4 : \dfrac{1}{2} \times AC \times \dfrac{16}{7} \\
= & 7 : 4
\end{array}$
- The equation of $BD$ is
2006-I-12
Ans: (a) $(4,4)$ (b) $2x+y-12=0$, $(6,0)$ (c) (i) $4x-5y-8=0$ (ii) $k=\left(\dfrac{34}{7},\dfrac{16}{6}\right)$, $7:4$