(iii) Impoosible (iv) $\$62.5$
- Let $C=k_1 A + \dfrac{k_2 A^2}{n}$, where $k_1$ and $k_2$ are non-zero constants. For $A=50$, $n=500$ and $C=350$, we have
$\begin{array}{rcl}
350 & = & k_1(50) + \dfrac{k_2 (50)^2}{500} \\
350 & = & 50k_1 +5k_2 \\
10k_1 + k_2 & = & 70~\ldots \unicode{x2460}
\end{array}$For $A=20$, $n=400$ and $C=100$, we have
$\begin{array}{rcl}
100 & = & k_1(20) + \dfrac{k_2 (20)^2}{400} \\
100 & = & 20k_1 + k_2 \\
20k_1 + k_2 & = & 100 ~\ldots \unicode{x2461}
\end{array}$$\unicode{x2461} – \unicode{x2460}$, we have
$\begin{array}{rcl}
10k_1 & = & 30 \\
k_1 & = & 3
\end{array}$Sub. $k_1=3$ into $\unicode{x2460}$, we have
$\begin{array}{rcl}
10(3) + k_2 & = & 70 \\
k_2 & = & 40
\end{array}$Therefore, $C=3A+\dfrac{40A^2}{n}$.
-
- By the result of (a), we have
$\begin{array}{rcl}
P & = & 8A – C \\
& = & 8A – (3A + \dfrac{40A^2}{n}) \\
& = & 5A – \dfrac{40A^2}{n}
\end{array}$ - Since $P:n=5:32$, then we have
$\begin{array}{rcl}
\dfrac{P}{n} & = & \dfrac{5}{32} \\
P & = & \dfrac{5n}{32}
\end{array}$Sub. $P=\dfrac{5n}{32}$ into the result of (b)(i), we have
$\begin{array}{rcl}
5A – \dfrac{40A^2}{n} & = & \dfrac{5n}{32}\\
160An – 1280A^2 & = & 5n^2 \\
256A^2 – 32 An + n^2 & = & 0 \\
(16A-n)^2 & = & 0 \\
16A -n & = & 0 \\
16A & = & n \\
\dfrac{A}{n} & = & \dfrac{1}{16} \\
A:n & = & 1:16
\end{array}$ - Sub. $n=500$ into the result of (b)(i), we have
$\begin{array}{rcl}
P & = & 5A – \dfrac{40A^2}{500} \\
& = & \dfrac{-2}{25} A^2 + 5A \\
\end{array}$The greatest profit
$\begin{array}{cl}
= & \dfrac{4(\frac{-2}{25})(0) – 5^2}{4 (\frac{-2}{25})} \\
= & \dfrac{625}{8} \\
< & 100 \end{array}$Therefore, it is impossible to make a profit of $\$100$.
- Sub. $n=400$ into the result of (b)(i), we have
$\begin{array}{rcl}
P & = & 5A – \dfrac{40A^2}{400} \\
& = & \dfrac{-1}{10}A^2 +5A \\
& = & \dfrac{-1}{10} (A^2 – 50A) \\
& = & \dfrac{-1}{10} (A^2 – 50A +(25)^2 – (25)^2) \\
& = & \dfrac{-1}{10} (A – 25)^2 + \dfrac{125}{2}
\end{array}$Therefore, the greatest profit is $\$62.5$.
- By the result of (a), we have