Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2006-I-17

Posted on 16-06-202112-06-2023 By app.cch No Comments on 2006-I-17
Ans: (a) $\dfrac{305}{9}\text{ cm}$ (b) (i) (1) $63.4\text{ cm}$ (2) $1\ 160\text{ cm}^2$ (3) $17.3\text{ cm}$ (ii) $\angle ADC$ increases from $30^\circ$ to $90^\circ$, the volume increases. $\angle ADC$ increases from $90^\circ$ to $150^\circ$, the volume decreases.

  1. By applying the cosine law on $\Delta ABC$, we have

    $\begin{array}{rcl}
    \cos \angle BAD & = & \dfrac{AB^2 + AC^2 -BC^2}{2(AB)(AC)} \\
    & = & \dfrac{40^2 +90^2 – 60^2}{2 (40)(90)} \\
    & = & \dfrac{61}{72}
    \end{array}$

    Consider $\Delta ABD$,

    $\begin{array}{rcl}
    \cos \angle BAD & = & \dfrac{AD}{AB} \\
    AD & = & 40 \times \dfrac{61}{72} \\
    & = & \dfrac{305}{9} \text{ cm}
    \end{array}$

      1. By applying the cosine law on $\Delta ACD$ and the result of (a), we have

        $\begin{array}{rcl}
        AD^2 + AC^2 -2(AD)(AC) \cos \angle DAC & = & CD^2 \\
        AC^2 – 31.819~739~26 AC – 2000 & = & 0 \\
        \end{array}$

        Therefore, $AC=63.376~952~45 \text{ cm}$ or $AC=-31.55721319\text{ cm}$ (rejected).

      2. By applying the Heron’s formula on $\Delta ABC$, we have

        $\begin{array}{rcl}
        s & = & \dfrac{1}{2} ( AB + AC + BC) \\
        & = & 81.688~472~23 \text{ cm}
        \end{array}$

        Hence, the area of $\Delta ABC$

        $\begin{array}{cl}
        = & \sqrt{s(s-AB)(s-AC)(s-BC)} \\
        = & 1~162.961~054 \text{ cm}^2
        \end{array}$

      3. The volume of the tetrahedron $ABCD$ with base $\Delta ACD$

        $\begin{array}{cl}
        = & \dfrac{1}{3} \times BD \times \text{the area of $\Delta ACD$} \\
        = & \dfrac{1}{3} \times BD \times \dfrac{1}{2} \times AD \times AC \times \sin \angle DAC \\
        = & 6~716.175~187 \text{ cm}^3
        \end{array}$

        Let $h\text{ cm}$ be the height of the tetrahedron $ABCD$ from the vertex $D$ to the base $\Delta ABC$. The volume of the tetrahedron $ABCD$ with base $\Delta ABC$

        $\begin{array}{cl}
        = & \dfrac{1}{3} \times h \times \text{the area of $\Delta ABC$} \\
        = & 387.653~684~7 h \text{ cm}^3
        \end{array}$

        Hence, we have

        $\begin{array}{rcl}
        387.653~684~7 h & = & 6~716.175~187 \\
        h & = & 17.325~193~73 \text{ cm}
        \end{array}$

        Therefore, the required height is $17.325~193~73\text{ cm}$.

    1. Refer to part (b)(i)(3), the volume of tetrahedron $ABCD$

      $\begin{array}{cl}
      = & \dfrac{(AD)(AC)(BD)\sin \angle DAC}{6}
      \end{array}$

      Since $AD$, $AC$, $BD$ and $\dfrac{1}{6}$ are constants, then the volume of tetrahedron $ABCD$ varies directly as $\sin \angle DAC$.

      Hence, we have the following conclusion:

      When $\angle ADC$ increases from $30^\circ$ to $90^\circ$, the value of $\sin \angle DAC$ increases and so the volume of tetrahedron $ABCD$ increases.

      When $\angle ADC$ increases from $90^\circ$ to $150^\circ$, the value of $\sin \angle DAC$ decreases and so the volume of tetrahedron $ABCD$ decreases.

Same Topic:

Default Thumbnail2006-II-24 Default Thumbnail2006-II-45 Default Thumbnail2007-II-24 Default Thumbnail2009-I-17
2006, HKCEE, Paper 1 Tags:3D Problems

Post navigation

Previous Post: 2007-II-54
Next Post: 2006-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme