Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2007-I-12

Posted on 16-06-202121-06-2023 By app.cch No Comments on 2007-I-12
Ans: (a) $7$ (b) $40$ (c) $\dfrac{1}{10}$ (d) Pie chart: no; Bar chart: yes, double the height of each bar

  1. Since the numbers of students and the angles at centre of the pie chart are in proportion, then we have

    $\begin{array}{rcl}
    \dfrac{17}{153^\circ} & = & \dfrac{k}{63^\circ} \\
    k & = & \dfrac{17 \times 63^\circ}{153^\circ} \\
    k & = & 7
    \end{array}$

  2. The number of students in class $A$

    $\begin{array}{cl}
    = & 17 \div \dfrac{153^\circ}{360^\circ} \\
    = & 40
    \end{array}$

  3. The number of students having $1$ key

    $\begin{array}{cl}
    = & 40 – 12 – 17 – 7 \\
    = & 4
    \end{array}$

    Therefore, the required probability

    $\begin{array}{cl}
    = & \dfrac{4}{40} \\
    = & \dfrac{1}{10}
    \end{array}$

  4. There is no modification need for the pie chart. And for the bar chart, the lengths of bars should be doubled.

Same Topic:

Default Thumbnail2007-I-04 Default Thumbnail2007-II-34 Default Thumbnail2007-II-35 Default Thumbnail2007-II-36
2007, HKCEE, Paper 1 Tags:Statistics

Post navigation

Previous Post: 2008-II-54
Next Post: 2006-I-02

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme