Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2007-II-19

Posted on 16-06-202121-06-2023 By app.cch No Comments on 2007-II-19
Ans: A
Consider $\Delta CDF$ and $\Delta CBF$. With bases $FD$ and $FB$, they have the same height. Hence, we have

$\begin{array}{rcl}
\dfrac{\text{area of }\Delta CDF}{\text{area of }\Delta CBF} & = & \dfrac{DF}{BF} \\
\text{area of }CDF & = & \dfrac{DF}{BF} \times \text{area of }\Delta CBF \ \ldots \unicode{x2460}
\end{array}$

Consider $\Delta CDF$ and $\Delta EBF$. Since they are similar, we have

$\begin{array}{rcl}
\dfrac{\text{area of }\Delta CDF}{\text{area of }\Delta EBF} & = & \dfrac{DF^2}{BF^2} \\
\text{area of } \Delta CDF & = & \dfrac{DF^2}{BF^2} \times \text{area of }\Delta EBF \ \ldots \unicode{x2461}
\end{array}$

Sub. $\unicode{x2460}$ into $\unicode{x2461}$, we have

$\begin{array}{rcl}
\dfrac{DF}{BF} \times \text{area of }\Delta CBF & = & \dfrac{DF^2}{BF^2} \times \text{area of }\Delta EBF \\
\text{area of }\Delta CBF & = & \dfrac{DF}{BF} \times \text{area of }\Delta EBF \ \ldots \unicode{x2462}
\end{array}$

Consider $\Delta DEF$ and $\Delta EBF$. With bases $DF$ and $BF$, they have the same height. Hence, we have

$\begin{array}{rcl}
\dfrac{\text{area of }\Delta DEF}{\text{area of }\Delta EBF} & = & \dfrac{DF}{BF} \ \ldots \unicode{x2463}
\end{array}$

Sub. $\unicode{x2463}$ into $\unicode{x2462}$, we have

$\begin{array}{rcl}
\text{area of }\Delta CBF & = & \dfrac{\text{area of }\Delta DEF}{\text{area of }\Delta EBF} \times \text{area of }\Delta EBF \\
\text{area of }\Delta CBF & = & \text{area of }\Delta DEF
\end{array}$

Therefore, the ratio of the $\text{area of }\Delta DEF$ to the $\text{area of }\Delta CBF$ is $1: 1$.

Same Topic:

Default Thumbnail2007-I-09 Default Thumbnail2007-II-16 Default Thumbnail2007-II-17 Default Thumbnail2007-II-18
2007, HKCEE, Paper 2 Tags:Mensuration

Post navigation

Previous Post: 2008-II-54
Next Post: 2006-I-02

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme