Ans: B
Taking log of answer A, we have
Taking log of answer A, we have
$\begin{array}{rcl}
\log 500^{3\ 000} & = & 3\ 000\log 500 \\
& = & 8\ 096.910\ 013
\end{array}$
Taking log of answer B, we have
$\begin{array}{rcl}
\log 2\ 000^{2\ 500} & = & 2\ 500 \log 2\ 000 \\
& = & 8\ 252.574\ 989
\end{array}$
Taking log of answer C, we have
$\begin{array}{rcl}
\log 2\ 500^{2\ 000} & = & 2\ 000 \log 2\ 500 \\
& = & 6\ 795.880\ 017
\end{array}$
Taking log of answer D, we have
$\begin{array}{rcl}
\log 3\ 000^{500} & = & 500 \log 3\ 000 \\
& = & 1\ 738.560\ 627
\end{array}$
Since $\log 2\ 000^{2\ 500}= 8\ 252.574\ 989$ is the greatest, then $2\ 000^{2\ 500}$ is the greatest.