Ans: (a) $x\ge \dfrac{35}{4}$ (b) $9$
-
$\begin{array}{rcl}
\dfrac{14x}{5} & \ge & 2x + 7 \\
14x & \ge & 5(2x + 7) \\
14x & \ge & 10x + 35 \\
4x & \ge & 35 \\
x & \ge & \dfrac{35}{4}
\end{array}$ - By the result of (a), $x \ge 8.75$. Therefore, the required least integer is $9$.