Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2008-I-17

Posted on 16-06-202121-06-2023 By app.cch No Comments on 2008-I-17
Ans: (b) (i) $x^2+y^2+16x+128y-5120=0$ (ii) $(-8,81)$ (iii) No

  1. Consider $\Delta ABC$.

    $\begin{array}{ll}
    \angle PAB = \angle PAC & \text{(in-centre)}
    \end{array}$

    Since $A$, $B$, $P$ and $C$ are four points on the circumference,

    $\begin{array}{ll}
    \angle PAB = \angle PCB & \text{($\angle$ in the same segment)} \\
    \angle PAC = \angle PBC & \text{($\angle$ in the same segment)}
    \end{array}$

    Hence, we have $\angle PBC = \angle PCB$. Therefore, we have

    $\begin{array}{ll}
    BP=CP & \text{(sides opp. eq. $\angle$s)}
    \end{array}$

    Join $C$ and $I$. Consider $\Delta ABC$,

    $\begin{array}{ll}
    \angle BCI = \angle ACI & \text{(in-centre)}
    \end{array}$

    Also, we have

    $\begin{array}{ll}
    \angle PAC = \angle PCB & \text{(proved)}
    \end{array}$

    Hence, we have

    $\begin{array}{ll}
    \angle PCI & \\
    = \angle PCB + \angle BCI & \\
    = \angle PAC + \angle ACI & \text{(proved)} \\
    = \angle PIC & \text{(ext. $\angle$ of $\Delta$)}
    \end{array}$

    Therefore, we have

    $\begin{array}{ll}
    CP=IP & \text{(sides opp. eq. $\angle$s)}
    \end{array}$

    Hence, $BP=CP=IP$.

    1. Note that $G$ is the circumcentre of $\Delta ABC$, then $GP$ is the perpendicular bisector of $BC$. Note also that $B$ and $C$ are lying on $x$-axis, then $BC$ is a horizontal line. Hence, the $x$ coordinates of $G$ and $P$ are the same. The $x$ coordinate of $P$

      $\begin{array}{cl}
      = & \dfrac{-80 + 64}{2} \\
      = & -8
      \end{array}$

      Let $P=(-8, y)$. By the result of (a), we have

      $\begin{array}{rcl}
      BP & = & IP \\
      \sqrt{(-80-(-8))^2+(0-y)^2} & = & \sqrt{(0-(-8))^2 + (32-y)^2} \\
      5184 + y^2 & = & 64 + 1024 – 64y +y^2 \\
      64y & = & -4096 \\
      y & = & -64
      \end{array}$

      Therefore, $P=(-8,-64)$. Then, we have

      $\begin{array}{rcl}
      BP & = & \sqrt{(-80-(-8))^2 + (0-(-64))^2} \\
      & = & \sqrt{9280}
      \end{array}$

      Hence, the required equation is

      $\begin{array}{rcl}
      (x-(-8))^2 + (y-(-64))^2 & = & (\sqrt{9280})^2 \\
      x^2 +16x +64 + y^2 + 128y +4096 & = & 9280 \\
      x^2 +y^2 +16x + 128y – 5120 & = & 0
      \end{array}$

    2. Let $G=(-8,m)$. Since $G$ is the circumcentre of $\Delta ABC$, then

      $\begin{array}{rcl}
      BG & = & GP \\
      \sqrt{(-80-(-8))^2 + (0-m)^2} & = & m-(-64) \\
      5184 + m^2 & = & (m+64)^2 \\
      5184 + m^2 & = & m^2 +128m +4096 \\
      128m & = & 1088 \\
      m & = & \dfrac{17}{2}
      \end{array}$

      Therefore, $G=(-8,\dfrac{17}{2})$. Note that $PQ$ is a diameter and $G$ is the centre of the circle $ABPC$. Note also that $PQ$ is a vertical line. Hence let $Q=(-8,n)$. Then we have

      $\begin{array}{rcl}
      QG & = & PG \\
      n – \dfrac{17}{2} & = & \dfrac{17}{2} – (-64) \\
      n & = & 81
      \end{array}$

      Therefore, $Q=(-8,81)$.

    3. The slope of $BQ$

      $\begin{array}{cl}
      = & \dfrac{81- 0}{-8-(-80)} \\
      = & \dfrac{9}{8}
      \end{array}$

      The slope of $QI$

      $\begin{array}{cl}
      = & \dfrac{81- 32}{-8-0} \\
      = & \dfrac{-49}{8}
      \end{array}$

      Since the slope of $BQ\times$ the slope of $QI \neq -1$, then $\angle BQI \neq 90^\circ$. Hence, $\angle BQI \neq \angle IRC$. Therefore, $B$, $Q$, $I$ and $R$ are not concyclic.

Same Topic:

Default Thumbnail2007-I-17 Default Thumbnail2008-II-51 Default Thumbnail2008-II-53 Default Thumbnail2012PP-I-14
2008, HKCEE, Paper 1 Tags:Equations of Circle, Properties of Circles

Post navigation

Previous Post: 2009-II-54
Next Post: 2007-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme