Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2009-I-13

Posted on 16-06-202121-06-2023 By app.cch No Comments on 2009-I-13
Ans: (a) (i) $864\pi\text{ cm}^3$ (ii) $608\pi\text{ cm}^3$ (b) (i) $13\text{ cm}$ (ii) No

    1. The capacity of the circular conical container

      $\begin{array}{cl}
      = & \dfrac{1}{3} \times \pi (12)^2 \times 18 \\
      = & 864\pi \text{ cm}^3
      \end{array}$

    2. Since $\Delta VAB \sim \Delta VCD$, then we have

      $\begin{array}{rcl}
      \dfrac{VA}{VC} & = & \dfrac{AB}{CD} \\
      \dfrac{18}{18-6} & = & \dfrac{12}{CD} \\
      CD & = & 8\text{ cm}
      \end{array}$

      Therefore, the volume of the frustum

      $\begin{array}{cl}
      = & 864\pi – \dfrac{1}{3}\times \pi (8)^2 \times 12 \\
      = & 608\pi \text{ cm}^3
      \end{array}$

    1. Let $h\text{ cm}$ be the water depth in the frustum at the top. The volume of the cylinder at the bottom

      $\begin{array}{cl}
      = & \pi (8)^2 \times 10 \\
      = & 640\pi \text{ cm}^3
      \end{array}$

      Therefore, the volume of the water in the frustum on the top

      $\begin{array}{cl}
      = & 884\pi – 640 \pi \\
      = & 244 \pi \text{ cm}^3
      \end{array}$

      Since the frustum at the top and the frustum formed by the water are not similar, we have to consider the original right circular conical container.

      Since the whole conical container is similar to the water in the frustum on the top plus the lower part of the container, which is cut off in part (a)(ii), then we have

      $\begin{array}{rcl}
      \dfrac{\text{capacity of the container}}{\text{volume of water and the lower part}} & = & \left(\dfrac{18}{12 + h} \right)^3 \\
      \dfrac{864\pi}{244 + \frac{1}{3} \times \pi (8)^2 \times 12} & = & \left(\dfrac{18}{12+h}\right)^3 \\
      \dfrac{864\pi}{500\pi} & = & \left(\dfrac{18}{12+h} \right)^3 \\
      \dfrac{6}{5} & = & \dfrac{18}{12+h} \\
      12 + h & = & 18 \times \dfrac{6}{5} \\
      12 + h & = & 15 \\
      h & = & 3
      \end{array}$

      Therefore, the depth of water in the frustum at the top is $3\text{ cm}$. Hence, the depth of water in the vessel

      $\begin{array}{cl}
      = & 10 + 3 \\
      = & 13\text{ cm}
      \end{array}$

    2. The volume of the empty part of the frustum at the top

      $\begin{array}{cl}
      = & 608\pi – 244 \pi \\
      = & 364 \pi \\
      = & 1~143.539~726 \text{ cm}^3 \\
      > & 1~000 \text{ cm}^3
      \end{array}$

      Therefore, the water will not overflow.

Same Topic:

Default Thumbnail2009-II-07 Default Thumbnail2009-II-17 Default Thumbnail2009-II-20 Default Thumbnail2009-II-22
2009, HKCEE, Paper 1 Tags:Mensuration

Post navigation

Previous Post: 2010-II-54
Next Post: 2008-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme