Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2009-II-33

Posted on 16-06-202121-06-2023 By app.cch No Comments on 2009-II-33
Ans: D
According to the slope-intercept form, the slope and the $y$ intercept of $L_1$ are $a$ and $b$ respectively, and the slope and the $y$ intercept of $L_2$ are $c$ and $d$ respectively. According to the given figure, $a>0$, $b<0$, $c<0$ and $d>0$.

A must be false. Since $a>0$ and $b<0$, then $ab<0$.

B must be false. Since $c<0$ and $d>0$, then $cd<0$.

C cannot be justified to be true or false.

D must be true. Since the intersection point lies on the positive $x$-axis, then the $y$ coordinate of the intersection is $0$. Sub. $y=0$ into the equation of $L_1$, we have

$\begin{array}{rcl}
0 & = & ax + b \\
x & = & \dfrac{-b}{a}
\end{array}$

Sub. $y=0$ into the equation of $L_2$, we have

$\begin{array}{rcl}
0 & = & cx + d \\
x & = & \dfrac{-d}{c}
\end{array}$

Hence, we have

$\begin{array}{rcl}
\dfrac{-b}{a} & = & \dfrac{-d}{c} \\
ad & = & bc
\end{array}$

Same Topic:

Default Thumbnail2008-II-32 Default Thumbnail2009-II-31 Default Thumbnail2009-II-32 Default Thumbnail2010-II-32
2009, HKCEE, Paper 2 Tags:Equations of Straight Line

Post navigation

Previous Post: 2010-II-54
Next Post: 2008-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme