-
$\begin{array}{rcl}
s & = & \dfrac{17+17+16}{2} \\
& = & 25 \text{ cm}
\end{array}$Therefore, the area of $\Delta ABC$
$\begin{array}{cl}
= & \sqrt{25(25-17)(25-17)(25-16)} \\
= & 120 \text{ cm}^2
\end{array}$ - The volume of $ABCDEF$
$\begin{array}{cl}
= & 120 \times 20 \\
= & 2~400\text{ cm}^3
\end{array}$ -
- Since $\Delta ABC \sim \Delta APQ$, then we have
$\begin{array}{rcl}
\dfrac{\text{Area of }\Delta APQ}{\text{Area of }\Delta ABC} & = & \left(\dfrac{PQ}{BC}\right)^2 \\
\dfrac{\text{Area of }\Delta APQ}{120} & = & \left(\dfrac{4}{16}\right)^2 \\
\text{Area of }\Delta APQ & = & 7.5\text{ cm}^2
\end{array}$Therefore, the volume of $APQRES$
$\begin{array}{cl}
= & 7.5 \times 20 \\
= &150\text{ cm}^3
\end{array}$ - By the result of (b) and (c)(i), we have
$\begin{array}{cl}
& \dfrac{\text{Volume of }APQRES}{\text{Volume of }ABCDEF} \\
= & \dfrac{2400}{150} \\
= & 16
\end{array}$However,
$\begin{array}{cl}
& \left(\dfrac{\text{Height of }APQRES}{\text{Height of }ABCDEF}\right)^3 \\
= & \left(\dfrac{20}{20}\right)^3 \\
= & 1 \\
\neq & 16
\end{array}$Therefore, the two wooden blocks are not similar.
- Since $\Delta ABC \sim \Delta APQ$, then we have
2010-I-13
Ans: (a) $120\text{ cm}^2$ (b) $2\ 400\text{ cm}^3$ (c) (i) $150\text{ cm}^3$ (ii) No