Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2010-I-17

Posted on 16-06-202121-06-2023 By app.cch No Comments on 2010-I-17
Ans: (a) (i) $D=(-6,8)$, centre $=(1,7)$ (ii) $5\sqrt{2}$ (b) (i) $1:2$ (ii) Yes

    1. By rotating point $B$ about the origin (i.e. point $A$) $90^\circ$ anti-clockwise, the coordinates of $D$ are $(-6,8)$.

      Since $\angle BAD=90^\circ$, then $BD$ is a diameter of the circle $ABCD$. Hence, the centre of the circle $ABCD$

      $\begin{array}{cl}
      = & \left(\dfrac{-6+8}{2}, \dfrac{8+6}{2} \right) \\
      = & (1,7)
      \end{array}$

    2. The radius of the circle

      $\begin{array}{cl}
      = & \dfrac{1}{2} \sqrt{(-6-8)^2 +(8-6)^2} \\
      = & \dfrac{1}{2} \sqrt{200} \\
      = & \dfrac{1}{2} \times 10 \sqrt{2} \\
      = & 5\sqrt{2}
      \end{array}$

    1. Note that the length of $AB$ is equal to the length of the diameter of the circle $A_1B_1C_1D_1$. Hence the length of the diameter of the circle $A_1B_1C_1D_1$

      $\begin{array}{cl}
      = & \sqrt{(8-0)^2 + (6-0)^2} \\
      = & 10
      \end{array}$

      Since the circles $ABCD$ and $A_1B_1C_1D_1$ are similar, then we have

      $\begin{array}{cl}
      & \dfrac{\text{area of circle }A_1B_1C_1D_1}{\text{area of circle }ABCD} \\
      = & \left( \dfrac{\text{diameter of circle }A_1B_1C_1D_1}{\text{diameter of circle }ABCD} \right)^2 \\
      = & \left(\dfrac{10}{2\times5\sqrt{2}} \right)^2 \\
      = & \dfrac{1}{2} \\
      = & 1: 2
      \end{array}$

    2. The area of the region between square $ABCD$ and circle $A_1B_1C_1D_1$

      $\begin{array}{cl}
      = & 10^2 – \pi(5)^2 \\
      = & 100-25\pi
      \end{array}$

      Therefore, the area of the region between square $A_1B_1C_1D_1$ and circle $A_2B_2C_2D_2$

      $\begin{array}{cl}
      = & \dfrac{1}{2} \times (100-25\pi) \\
      = & \dfrac{100-25\pi}{2}
      \end{array}$

      Hence, the total area of all shaded region

      $\begin{array}{cl}
      = & 100-25\pi + \dfrac{100-25\pi}{2} + \dfrac{100-25\pi}{2^9} \\
      = & (100-25\pi)(1+\dfrac{1}{2} + \cdots +\dfrac{1}{2^9}) \\
      = & (100-25\pi) \times\dfrac{1[1-(\frac{1}{2})^{10}]}{1-\frac{1}{2}} \\
      = & 42.878~452~9
      \end{array}$

      Hence, the total area of all shaded region to the area of circle $ABCD$

      $\begin{array}{cl}
      = & \dfrac{42.878~452~9}{\pi (5\sqrt{2})^2 } \\
      = & \dfrac{0.272~972~709}{1}
      \end{array}$

      Therefore, $p=0.272~972~709$ which is lying between $0.2$ and $0.3$. Hence, the design of the logo is good.

Same Topic:

Default Thumbnail2010-I-04 Default Thumbnail2010-II-12 Default Thumbnail2010-II-43 Default Thumbnail2010-II-44
2010, HKCEE, Paper 1 Tags:Sequences

Post navigation

Previous Post: 2011-II-54
Next Post: 2009-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme