- Let $f(x)=k_1x^2+k_2x$, where $k_1$ and $k_2$ are nonzero constants.
For $f(-2)=28$, we have
$\begin{array}{rcl}
f(-2) & = & k_1(-2)^2+k_2(-2) \\
28 & = & 4k_1-2k_2 \\
14 & = & 2k_1-k_2 ~\ldots \unicode{x2460}
\end{array}$For $f(6)=-36$, we have
$\begin{array}{rcl}
f(6) & = & k_1(6)^2 +k_2(6) \\
-36 & = & 36k_1 + 6k_2 \\
-6 & = & 6k_1 + k_2~\ldots \unicode{x2461}
\end{array}$$\unicode{x2460} + \unicode{x2461}$, we have
$\begin{array}{rcl}
8 & = & 8k_1 \\
k_1 & = & 1
\end{array}$Sub. $k_1=1$ into $\unicode{x2461}$, we have
$\begin{array}{rcl}
-6 & = & 6(1) +k_2 \\
k_2 & = & -12
\end{array}$Therefore, $f(x)= x^2 -12x$.
-
- Note that the coordinates of the vertex are $(6,k)$.
Hence by the result of (a), we have
$\begin{array}{rcl}
k & = & \dfrac{4(1)(0)-(12)^2}{4(1)} \\
& = & -36
\end{array}$ - Sub. $x=10$ into $y=3(x-6)^2-36$, we have
$\begin{array}{rcl}
y & = & 3(10-6)^2 -36 \\
& = & 12
\end{array}$Therefore, the coordinates of $A$ are $(10,12)$.
Sub. $x=10$ into $f(x)=x^2-12x$, we have
$\begin{array}{rcl}
y & = & 10^2-12(10) \\
& = & -20
\end{array}$Therefore, the coordinates of $D$ are $(10,-20)$.
Sub. $y=-20$ into $f(x)=x^2-12x$, we have
$\begin{array}{rcl}
-20 & = & x^2-12x \\
x^2-12x+20 & = & 0 \\
(x-10)(x-2) & = & 0
\end{array}$Therefore, $x=2$ or $x=10$. Hence, the coordinates of $C$ are $(2,-20)$. Therefore, we have
$\begin{array}{rcl}
AD & = & 12- (-20) \\
& = & 32
\end{array}$and
$\begin{array}{rcl}
CD & = & 10 – 2 \\
& = & 8
\end{array}$Hence, the area of the rectangle $ABCD$
$\begin{array}{cl}
= & 8 \times 32 \\
= & 256
\end{array}$
- Note that the coordinates of the vertex are $(6,k)$.
2011-I-11
Ans: (a) $f(x)=x^2-12x$ (b) (i) $-36$ (ii) $256$