- The required probability
$\begin{array}{cl}
= & \dfrac{9}{12} \times \dfrac{5}{6} + \dfrac{3}{12}\times \dfrac{2}{3} \\
= & \dfrac{19}{24}
\end{array}$ -
- The required probability
$\begin{array}{cl}
= & \dfrac{5}{6} \times \dfrac{2}{3} \\
= & \dfrac{5}{9}
\end{array}$ - The required probability
$\begin{array}{cl}
= & \dfrac{3}{12}\times \dfrac{2}{3} \times \dfrac{2}{11} \times \dfrac{2}{3} \\
= & \dfrac{2}{99}
\end{array}$ - The probability that two customers do not complain
$\begin{array}{cl}
= & \dfrac{9}{12}\times \dfrac{5}{6} \times \dfrac{8}{11} \times \dfrac{5}{6} + 2 \times \dfrac{9}{12}\times \dfrac{3}{11} \times \dfrac{5}{9} + \dfrac{2}{99} \\
= & \dfrac{62}{99} \\
> & \dfrac{1}{2}
\end{array}$Therefore, the probability of not making complaints by the two selected customers is greater than the probability of making complaints by both of them.
- The required probability
2011-I-14
Ans: (a) $\dfrac{19}{24}$ (b) (i) $\dfrac{5}{9}$ (ii) $\dfrac{2}{99}$ (iii) Yes