- Since $\Delta PQR$ is an isosceles triangle with $PQ=PR$, then $PS$ is the axis of symmetry of $\Delta PQR$. Therefore, the coordinates of $R$ are $(64,-48)$.
The mid-point of $PR$
$\begin{array}{cl}
= & \left( \dfrac{16+64}{2}, \dfrac{80+(-48)}{2} \right) \\
= & (40,16)
\end{array}$The slope of $PR$
$\begin{array}{cl}
= & \dfrac{80 – (-48)}{16-64} \\
= & \dfrac{-8}{3}
\end{array}$Therefore, the slope of the perpendicular bisector
$\begin{array}{cl}
= & -1 \div \dfrac{-8}{3} \\
= & \dfrac{3}{8}
\end{array}$Hence, the equation of the perpendicular bisector of $PR$ is
$\begin{array}{rcl}
y-16 & = & \dfrac{3}{8}(x-40) \\
8y – 128 & = & 3x – 120 \\
3x-8y + 8 & = & 0
\end{array}$ - Since $\Delta PQR$ is an isosceles triangle with $PQ=PR$, then $PS$ is the perpendicular bisector of $QR$. Therefore, the circumcentre of $\Delta PQR$ must lies on $PS$. Hence the $x$ coordinate of the circumcentre is $16$.
Sub. $x=16$ into $3x-8y+8=0$, we have
$\begin{array}{rcl}
3(16) – 8y +8 & = & 0 \\
8y & = & 56 \\
y & = & 7
\end{array}$Therefore, the coordinates of the circumcentre of $\Delta PQR$ are $(16,7)$.
-
- The radius of the circle
$\begin{array}{cl}
= & 80 – 7 \\
= & 73
\end{array}$Therefore, the equation of $C$ is $(x-16)^2+(y-7)^2=73^2$.
- Since $\Delta PQR$ is an isosceles triangle with $PQ=PR$, then $PS\perp QR$, i.e. $\angle PSQ=90^\circ$. Let $K$ be the centre of $C$. If $K$ is also the in-centre, then $KQ$ is the angle bisector of $\angle PQS$.
In $\Delta PSQ$,
$\begin{array}{rcl}
\tan \angle PQS & = & \dfrac{PS}{QS} \\
& = & \dfrac{80-(-48)}{16 – (-32)} \\
\angle PQS & = & 69.443~954~78^\circ
\end{array}$In $\Delta KSQ$,
$\begin{array}{rcl}
\tan \angle KQS & = & \dfrac{KS}{QS} \\
& = & \dfrac{7-(-48)}{16-(-32)} \\
\angle KQS & = & 48.887~909~56^\circ
\end{array}$Since $\angle KQS \neq \dfrac{1}{2}\angle PQS$, then $KQ$ is not the angle bisector of $\angle PQR$. Therefore, the centre of $C$ and the in-centre of $\Delta PQR$ are not the same point.
- The radius of the circle
2011-I-16
Ans: (a) $3x-8y+8=0$ (b) $(16,7)$ (c) (i) $(x-16)^2+(y-7)^2=73^2$ (ii) No