Ans: C
Let $\$x$ and $\$y$ be the price of a pen and a pencil respectively.
Let $\$x$ and $\$y$ be the price of a pen and a pencil respectively.
$\left\{ \begin{array}{ll}
5x+4y=46 & \ldots \unicode{x2460} \\
2x+3y=24 & \ldots \unicode{x2461}
\end{array}\right.$
$\unicode{x2460} \times3 – \unicode{x2461} \times 4$, we have
$\begin{array}{rcl}
7x & = & 42 \\
x & = & 6
\end{array}$
Sub. $x=6$ into $\unicode{x2460}$, we have
$\begin{array}{rcl}
5(6) + 4y & = & 46 \\
4y & = & 16 \\
y & = & 4
\end{array}$
Therefore, the prices of a pen and a pencil are $\$6$ and $\$4$ respectively.
Hence, the price of $3$ pens and $2$ pencils
$\begin{array}{cl}
= & 3\times 6 + 2\times 4 \\
= & \$26
\end{array}$