Ans: (a) $A’=(5,2)$, $A”=(2,5)$ (b) No
- $A’=(5,2)$, $A”=(2,5)$.
- Slope of $OA”$
$\begin{array}{cl}
= & \dfrac{5-0}{2-0} \\
= & \dfrac{5}{2}
\end{array}$Slope of $AA’$
$\begin{array}{cl}
= & \dfrac{5-2}{-2-5}\\
= & -\dfrac{3}{7}
\end{array}$$\text{slope of }OA”\times\text{ slope of }AA’$
$\begin{array}{cl}
= & \dfrac{5}{2}\times(-\dfrac{3}{7}) \\
= & \dfrac{15}{14} \\
\neq & -1
\end{array}$Therefore, they are not perpendicular to each other.