- Note that the slope of $L_1=\dfrac{4}{3}$. Since $L_1$ is perpendicular to $L_2$, then$\begin{array}{rcl}
\mbox{the slope of }L_2 & = & -1\div \dfrac{4}{3} \\
& = & -\dfrac{3}{4}
\end{array}$The equation of $L_2$ is
$\begin{array}{rcl}
y-9 & = & -\dfrac{3}{4}(x-4) \\
4y-36 & = & -3x+12 \\
3x+4y-48 & = & 0
\end{array}$ -
- Since $\Gamma$ is the perpendicular bisector of $AB$, $\Gamma$ is parallel to $L_2$.
- Note that the slope of $\Gamma$ is $-\dfrac{3}{4}$.$\left\{ \begin{array}{ll}
4x-3y+12=0 & \ldots\unicode{x2460} \\
3x+4y-48=0 & \ldots \unicode{x2461}
\end{array} \right. $$4\times \unicode{x2460} +3\times \unicode{x2461}$, we have
$\begin{array}{rcl}
25x-96 & = & 0 \\
x & = & \dfrac{96}{25}
\end{array}$Sub. $x=\dfrac{96}{25}$ into $\unicode{x2461}$, we have
$\begin{array}{rcl}
3(\dfrac{96}{25}) +4y-48 & = & 0 \\
y & = & \dfrac{228}{25}
\end{array}$$\therefore A=(\dfrac{96}{25},\dfrac{228}{25})$.
Sub. $x=0$ into the equation of $L_1$, we have $y=4$. Therefore $B=(0,4)$.
$\therefore$ the mid-point of $AB$
$\begin{array}{cl}
= & (\dfrac{0+\frac{96}{25}}{2}, \dfrac{4+\frac{228}{25}}{2}) \\
= & (\dfrac{48}{25}, \dfrac{164}{25})
\end{array}$$\therefore$ the equation of $\Gamma$ is
$\begin{array}{rcl}
y-\dfrac{164}{25} & = & -\dfrac{3}{4} (x-\dfrac{48}{25}) \\
100y-656 & = & -75x+144\\
3x+4y-32 & = & 0
\end{array}$
2011SP-I-13
Ans: (a) $3x+4y-48=0$ (b) (i) Parallel (ii) $3x+4y-32=0$