- By sine law, we have
$\begin{array}{rcl}
\dfrac{20}{\sin 30^\circ} & = & \dfrac{BC}{\sin 45^\circ} \\
BC & = & \dfrac{20\sin 45^\circ}{\sin 30^\circ} \\
BC & = & 28.284~271~25\mbox{ cm}
\end{array}$In $\Delta BCD$,
$\begin{array}{rcl}
\cos 30^\circ & = & \dfrac{BD}{BC} \\
BD & = & BC\cos 30^\circ \\
& = & 24.494~897~43\mbox{ cm}
\end{array}$ -
- In $\Delta ACD$,
$\begin{array}{rcl}
\cos 45^\circ & = & \dfrac{AD}{AC} \\
AD & = & 20\cos 45^\circ \\
& = & 14.142~135~62\mbox{ cm}
\end{array}$In $\Delta ABD$ and by cosine law, we have
$\begin{array}{rcl}
\cos \angle BDA & = & \dfrac{AD^2+BD^2-AB^2}{2(AD)(BD)} \\
& = & 0.687~046~82 \\
\angle BDA & = & 46.603~208~66^\circ
\end{array}$Therefore, the required angle is $46.6^\circ$.
- Note that the volume of $ABCD$
$\begin{array}{cl}
= & \dfrac{1}{3}(\text{area of }\Delta ADB)(DC)
\end{array}$Note also that the area of $\Delta ADB$
$\begin{array}{cl}
= & \dfrac{1}{2} (AD)(BD)\sin \angle ADB
\end{array}$Since the lengths of $AD$, $BD$ and $DC$ are constant, the volume of $ABCD$ varies directly as $\sin \angle ADB$.
When $\angle ADB$ increases from $40^\circ$ to $90^\circ$, $\sin \angle ADB$ increases and then the volume of $ABCD$ increases.
When $\angle ADB$ increases from $90^\circ$ to $140^\circ$, $\sin \angle ADB$ decreases and then the volume of $ABCD$ decreases.
- In $\Delta ACD$,
2011SP-I-18
Ans: (a) $BC=20\sqrt{2}\text{ cm}$, $BD=10\sqrt{6}\text{ cm}$ (b) (i) $46.6^\circ$ (ii) increase from $40^\circ$ to $90^\circ$, the volume increases. Increase from $90^\circ$ to $140^\circ$, the volume decreases.