Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2011SP-I-19

Posted on 16-06-202119-06-2023 By app.cch No Comments on 2011SP-I-19
Ans: (a) (ii) Yes (b) $y=2x+1$

    1. Join $CD$.

      $\angle QCD = \angle CDE$ (alt. $\angle$s, $PQ//BD$)

      $\angle QCD = \angle DAE$ ($\angle$ in alt. seg.)

      $\angle CDE= \angle BAE$ ($\angle$ in the same seg.)

      $\therefore \angle DAE = \angle BAE$.

      $AD=AB$ (given)

      $AE=AE$ (common side)

      $\therefore \Delta ABD\cong \Delta ADE$ (S.A.S.)

    2. $\because BE = DE$ (corr. sides, $\cong \Delta$)

      $\therefore AE$ is a median.

      $\therefore$ the centroid is on $AE$.

      $\because \angle BAE = \angle DEA$ (proved)

      $\therefore AE$ is the angle bisector of $\angle BAD$.

      $\therefore$ the circumcenter is on $AE$.

      $\because \angle AEB = \angle AED$ (corr. $\angle$s, $\cong \Delta$)

      $\therefore AE \perp BD$

      $\therefore AE$ is an altitude of $\Delta ABD$.

      $\therefore$ the orthocentre is on $AE$.

      $\because AE \perp BD$ and $BE=DE$,

      $\therefore AE$ is the perpendicular bisector of $BD$.

      $\therefore$ the in-centre is on $AE$.

      $\therefore$ the in-centre, the orthocentre, the centroid and the circumcenter of $\Delta ABD$ are collinear.

  1. Let $x^2+y^2+Dx+Ey+F=0$ be the equation of the circle. Then we have

    $\left\{ \begin{array}{l}
    14^2+4^2+14D+4E+F=0 \\
    8^2+12^2+8D+12E+F=0 \\
    4^2+4^2+4D+4E+F=0 \\
    \end{array} \right.$

    After simplifying, we have

    $\left\{ \begin{array}{ll}
    14D+4E+F=-212 & \ldots \unicode{x2460} \\
    8D+12E+F=-208 & \ldots \unicode{x2461} \\
    4D+4E+F = -32 & \ldots \unicode{x2462}
    \end{array} \right.$

    $\unicode{x2460} – \unicode{x2462}$, we have

    $\begin{array}{rcl}
    10D & = & -180 \\
    D & = & -18
    \end{array}$

    $\unicode{x2461} – \unicode{x2462}$, we have

    $\begin{array}{rcl}
    4D+8E & = & -176 \\
    E & = & -13 \\
    \end{array}$

    Sub. $D=-18$ and $E=-13$ into $\unicode{x2462}$, we have

    $\begin{array}{rlc}
    4(-18)+4(-13)+F & = & -32 \\
    F & = & 92 \\
    \end{array}$

    $\therefore$ the equation of the circle is $x^2+y^2-18x-13y+92=0$.

    Since $PQ//BD$, their slopes are the same.

    The slope of $PQ$

    $\begin{array}{cl}
    = & \mbox{The slope of }BD \\
    = & \dfrac{12-4}{8-4} \\
    = & 2
    \end{array}$

    Let $y=2x+c$ be the equation of $PQ$.

    $\left\{ \begin{array}{ll}
    x^2+y^2-18x-13y+92=0 & \ldots \unicode{x2463}\\
    y=2x+c & \ldots \unicode{x2464}
    \end{array} \right.$

    Sub. $\unicode{x2464}$ into $\unicode{x2463}$, we have

    $\begin{array}{rcl}
    x^2+(2x+c)^2-18x-13(2x+c)+92 & = & 0 \\
    5x^2+(4c-44)x +(c^2-13c+92) & = & 0
    \end{array}$

    Since $PQ$ is a tangent to the circle, then

    $\begin{array}{rcl}
    \Delta & = & 0 \\
    (4c-44)^2-4(5)(c^2-13c+92) & = & 0 \\
    c^2+23c -24 & = & 0 \\
    (c-1)(c+24) & = & 0
    \end{array}$

    $\therefore c=1$ or $c=-24$ (rejected).

    $\therefore$ the equation of $PQ$ is $y=2x+1$.

Same Topic:

Default Thumbnail2017-I-13 Default Thumbnail2017-II-26 Default Thumbnail2018-I-19 Default Thumbnail2021-II-40
2011SP, HKDSE-MATH, Paper 1 Tags:Equations of Circle

Post navigation

Previous Post: 2012PP-II-45
Next Post: 2011-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme