- The volume of the circular cone
$\begin{array}{cl}
= & \dfrac{1}{3} \pi (48)^2 (96) \\
= & 73~728\pi\mbox{ cm}^3
\end{array}$ -
- The volume of the milk in the vessel
$\begin{array}{cl}
= & \dfrac{1}{2} \times \dfrac{4}{3}\pi (60)^3 \\
= & 144~000\pi\mbox{ cm}^3
\end{array}$ - Let $h\mbox{ cm}$ and $b\mbox{ cm}$ be the height and the upper base radius of the frustum immersed in the milk respectively. Therefore, we have
$\begin{array}{rcl}
h & = & \sqrt{60^2-48^2} \\
& = & 36
\end{array}$Also,
$\begin{array}{rcl}
\dfrac{b}{48} & = & \dfrac{96-36}{96} \\
b & = & 30
\end{array}$Therefore, the volume of the frustum
$\begin{array}{cl}
= & 73~728\pi-\dfrac{1}{3}\pi (30)^2(96-36) \\
= & 55~728\pi \mbox{ cm}^3
\end{array}$Hence, the volume of the milk remaining in the vessel
$\begin{array}{cl}
= & 144~000\pi-55~728\pi \\
= & 277~314.667\mbox{ cm}^3 \\
= & 0.277314667 \mbox{ m}^3 \\
< & 0.3 \mbox{ m}^3 \end{array}$Therefore, I don’t agree the claim.
- The volume of the milk in the vessel
2012-I-12
Ans: (a) $73\ 728\pi\text{ cm}^3$ (b) (i) $144\ 000\pi\text{ cm}^3$ (ii) No