- Note that $\angle APB = 180^\circ-72^\circ-60^\circ=48^\circ$.
In $\Delta ABP$, by sine law, we have
$\begin{array}{rcl}
\dfrac{AP}{\sin \angle ABP} & = & \dfrac{AB}{\sin \angle APB} \\
\dfrac{AP}{\sin 60^\circ} & = & \dfrac{20}{\sin 48^\circ} \\
AP & = & 23.307~042~56 \text{ cm}
\end{array}$ -
- In $\Delta PAB$, by sine law, we have
$\begin{array}{rcl}
\dfrac{PB}{\sin \angle PAB} & = & \dfrac{AB}{\sin \angle APB} \\
\dfrac{PB}{\sin 72^\circ} & = & \dfrac{20}{\sin 48^\circ} \\
PB & = & 25.595~455~52\text{ cm}
\end{array}$Add a point $X$ on $AD$ such that $PX \perp AD$.
In $\Delta PAX$,
$\begin{array}{rcl}
\sin \angle PAX & = & \dfrac{PX}{PA} \\
PX & = & PA \times \sin 72^\circ \\
& = & 22.166~314~7\text{ cm}
\end{array}$Also,
$\begin{array}{rcl}
\cos \angle PAX & = & \dfrac{AX}{PA} \\
AX & = & PA \times \cos 72^\circ \\
& = & 7.202~272~24\text{ cm}
\end{array}$Add a point $Y$ on $BC$ such that $PY\perp BC$.
Note that $BY=AX$. In $\Delta PBY$,
$\begin{array}{rcl}
PY & = & \sqrt{PB^2 – BY^2} \\
& = & 24.561~242~19\text{ cm}
\end{array}$In $\Delta PXY$, by cosine law, we have
$\begin{array}{rcl}
\cos \angle PYX & = & \dfrac{PY^2+XY^2-PX^2}{2(PY)(XY)} \\
& = & 0.521~053~766 \\
\angle PYX & = & 58.597~037~33^\circ \\
\end{array}$Therefore, $\alpha=58.6^\circ$.
- Let $P’$ be the projection of $P$ on the base $ABCD$.
In $\Delta PYP’$, $\sin \alpha = \dfrac{PP’}{PY}$.
In $\Delta PBP’$, $\sin \beta = \dfrac{PP’}{PB}$.
Hence, we have
$\begin{array}{rcl}
PY \sin \alpha & = & PB \sin \beta
\end{array}$Since $PY < PB$, then we have
$\begin{array}{rcl}
\sin \alpha & > & \sin \beta \\
\alpha & > & \beta
\end{array}$
- In $\Delta PAB$, by sine law, we have
2012-I-18
Ans: (a) $23.3\text{ cm}$ (b) (i) $58.6^\circ$ (ii) $\alpha$