Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2012-I-19

Posted on 16-06-2021 By app.cch No Comments on 2012-I-19
Ans: (a) (i) $a=210\ 000$, $b=1.1$, $450\ 153.6501\text{ tonnes}$ (ii) $1\ 210\ 000[(1.1)^{2n}-1]\text{ tonnes}$ (b) (i) Yes (ii) $14$

    1. According to the given information, we have

      $\left\{ \begin{array}{ll}
      254~100 = ab^2 & \ldots \unicode{x2460} \\
      307~461 = ab^4 & \ldots \unicode{x2461}
      \end{array} \right.$

      $\unicode{x2461} \div \unicode{x2460}$, we have

      $\begin{array}{rcl}
      1.21 & = & b^2 \\
      b & = & 1.1
      \end{array}$

      Sub. $b=1.1$ into $\unicode{x2460}$, we have

      $\begin{array}{rcl}
      254~100 & = & a (1.1)^2 \\
      a & = & 210~000
      \end{array}$

      Hence, the required weight of the goods

      $\begin{array}{cl}
      = & 210~000(1.1)^{2(4)} \\
      = & 450~153.6501 \mbox{ tonnes}
      \end{array}$

    2. The total weight of the goods

      $\begin{array}{cl}
      = & ab^{2} + ab^{4} + \cdots + ab^{2n} \\
      = & \dfrac{ab^2((b^2)^n-1)}{b^2-1} \\
      = & \dfrac{210~000(1.1)^2((1.1)^{2n}-1)}{1.1^2-1} \\
      = & 1~210~000[(1.1)^{2n}-1] \mbox{ tonnes}
      \end{array}$

    1. For the $m$th year since the start of $Y$,

      $\begin{array}{rcl}
      B(m) & = & 2(210~000)(1.1)^m
      \end{array}$

      and

      $\begin{array}{rcl}
      A(m+4) & = & (210~000)(1.1)^{2m+8}
      \end{array}$

      Hence, we have

      $\begin{array}{rcl}
      \dfrac{A(m+4)}{B(m)} & = & \dfrac{210~000(1.1)^{2m+8}}{2(210~000)(1.1)^m} \\
      & = & \dfrac{(1.1)^{m+8}}{2} \\
      & = & (1.1)^m \times \dfrac{(1.1)^8}{2} \\
      & > & (1.1)^m \\
      & > & 1 \\
      A(m+4) & > & B(m)
      \end{array}$

      Therefore, I agree the claim.

    2. Let $m$ be the number of years since the start of $Y$. Then the total weight of goods handled by $Y$

      $\begin{array}{cl}
      = & 2ab +2ab^2 + \cdots + 2ab^m \\
      = & \dfrac{2ab(b^m-1)}{b-1} \\
      = & \dfrac{2(210~000)(1.1)[(1.1)^m-1]}{1.1-1} \\
      = & 4~620~000[(1.1)^m-1] \mbox{ tonnes}
      \end{array}$

      Therefore, we have

      $\begin{array}{rcl}
      1.21\times10^6[(1.1)^{2m+8}-1]+ 4.62\times10^6[(1.1)^m-1] & > & 2\times 10^7 \\
      (1.1)^{10} (1.1)^{2m} + 4.62(1.1)^m -25.83 & > & 0 \\
      \end{array}$

      Therefore, we have

      $1.1^m>2.388~382~716$ or $1.1^m<-4.169~592~713$ (rejected).

      Hence, we have

      $\begin{array}{rcl}
      1.1^m & > & 2.388~382~716 \\
      m\log 1.1 & > & \log 2.388~382~716 \\
      m & > & 9.134~558~877
      \end{array}$

      The least value of $m$ is $10$. Therefore, the new facilities should be installed in the $10$th year since the start of $Y$. i.e. The new facilities should be installed in the $14$th year since the start of $X$.

Same Topic:

Default Thumbnail2012-II-12 Default Thumbnail2012-II-37 Default Thumbnail2021-I-17 Default Thumbnail2021-II-13
2012, HKDSE-MATH, Paper 1 Tags:Sequences

Post navigation

Previous Post: 2013-II-45
Next Post: 2011SP-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme