Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2012-II-21

Posted on 16-06-202119-06-2023 By app.cch No Comments on 2012-II-21
Ans: D
Let $O$ be the centre of the circle. Join $OD$ and $OC$.

Note that $OA$, $OB$, $OC$ and $OD$ are radii and the radius is $6 \mbox{ cm}$. Therefore, $\Delta OCD$ is an equilateral triangle. And hence $\angle COD = 60^\circ$.

Therefore, the area of $\Delta OCD$

$\begin{array}{cl}
= & \dfrac{1}{2} (6)(6)\sin 60^\circ \\
= & 9\sqrt{3} \mbox{ cm}^2
\end{array}$

Note also that

$\begin{array}{rcl}
\angle AOD+\angle BOC & = & 180^\circ – \angle COD \\
& = & 180^\circ-60^\circ \\
& = & 120^\circ
\end{array}$

Then, the sum of the areas of sectors $OAD$ and $OBC$

$\begin{array}{cl}
= & \pi(6)^2\times\dfrac{\angle AOD}{360^\circ}+\pi(6)^2\times\dfrac{\angle BOC}{360^\circ} \\
= & \pi(6)^2\times\dfrac{\angle AOD+\angle BOC}{360^\circ} \\
= & \pi(6)^2\times \dfrac{120^\circ}{360^\circ} \\
= & 12\pi \mbox{ cm}^2 \\
\end{array}$

Therefore, the area of the shaded region $=(12\pi + 9\sqrt{3}) \mbox{ cm}^2$.

Same Topic:

Default Thumbnail2012-II-20 Default Thumbnail2012-II-41 Default Thumbnail2012PP-II-40 Default Thumbnail2017-II-40
2012, HKDSE-MATH, Paper 2 Tags:Properties of Circles

Post navigation

Previous Post: 2013-II-45
Next Post: 2011SP-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme