Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2012PP-I-14

Posted on 16-06-2021 By app.cch No Comments on 2012PP-I-14
Ans: (a) $\Delta DBC \sim \Delta DOA$ (b) (i) $(0,4)$ (ii) $(x-3)^2+(y-2)^2=13$

  1. $\Delta DBC \sim \Delta DOA$.
    1. Let $C=(0,y)$. Since $\Delta DBC \sim \Delta DOA$, then

      $\begin{array}{rcl}
      \dfrac{\mbox{area of }\Delta OAD}{\mbox{area of }\Delta BCD} & = & \left(\dfrac{AD}{CD}\right)^2 \\
      \dfrac{45}{16} & = & \left(\dfrac{\sqrt{180}}{12-y}\right)^2 \\
      y^2 -24y+80 & = & 0 \\
      (y-20)(y-4) & = & 0
      \end{array}$

      Therefore $y=20$ or $y=4$. Since $C$ is below $D$, then the coordinates of $C$ is $(0,4)$.

    2. Since $\angle AOD=90^\circ$, $AC$ is a diameter. Therefore, the mid-point of $AC$ is the centre of the circle.

      The centre

      $\begin{array}{cl}
      = & \left( \dfrac{0+6}{2},\dfrac{4+0}{2} \right) \\
      = & (3,2)
      \end{array}$

      The radius

      $\begin{array}{cl}
      = & \sqrt{(3-0)^2+(2-0)^2} \\
      = & \sqrt{13}
      \end{array}$

      Therefore, the equation of the circle is $(x-3)^2+(y-2)^2 = 13$.

Same Topic:

Default Thumbnail2007-I-17 Default Thumbnail2008-I-17 Default Thumbnail2012PP-I-07 Default Thumbnail2012PP-II-41
2012PP, HKDSE-MATH, Paper 1 Tags:Equations of Circle, Properties of Circles

Post navigation

Previous Post: 2013-II-45
Next Post: 2011SP-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme