Ans: (a) median $=31$, mode $=23$ (b) (i) $\left\{\begin{array}{l} a=0 \\ b=7 \end{array}\right.$, $\left\{\begin{array}{l} a=1 \\ b=8 \end{array}\right.$ or $\left\{\begin{array}{l} a=2 \\ b=9 \end{array}\right.$ (ii) $\dfrac{8}{65}$
- The median
$\begin{array}{cl}
= & 31
\end{array}$The mode
$\begin{array}{cl}
= & 23
\end{array}$ -
- Since the range of the distribution is $47$, then we have
$\begin{array}{rcl}
(60 + b) – (20 + a) & = & 47 \\
b-a & = & 7
\end{array}$Therefore, the possible answers are $\left\{ \begin{array}{l}
a=0 \\
b=7
\end{array}\right.$
or $\left\{ \begin{array}{l}
a=1 \\
b=8
\end{array}\right.$
or $\left\{ \begin{array}{l}
a=2 \\
b=9
\end{array}\right.$. - The required probability
$\begin{array}{cl}
= & \dfrac{2}{20}\times\dfrac{3}{13} + \dfrac{7}{20}\times\dfrac{2}{13} +\dfrac{3}{20}\times\dfrac{4}{13} \\
= & \dfrac{8}{65}
\end{array}$
- Since the range of the distribution is $47$, then we have