- $R=(6,17)$
-
- Note that the slope of $L=\dfrac{-4}{3}$. Therefore, the slope of the straight line perpendicular to $L$
$\begin{array}{cl}
= & -1\div \dfrac{-4}{3} \\
= & \dfrac{3}{4}
\end{array}$Therefore, the equation of the straight line perpendicular to $L$ and passing through $R$ is
$\begin{array}{rcl}
y-17 & = & \dfrac{3}{4} ( x-6) \\
4y – 68 & = & 3x-18 \\
3x-4y + 50 & = & 0
\end{array}$For the coordinates of $P$,
$\left\{ \begin{array}{ll}
4x+3y+50 = 0 & \ldots \unicode{x2460} \\
3x-4y+50 = 0 & \ldots \unicode{x2461}
\end{array}\right.$$\unicode{x2460}\times 4 +\unicode{x2461}\times 3$, we have
$\begin{array}{rcl}
25x + 350 & = & 0 \\
x & = & -14
\end{array}$Sub. $x=-14$ into \mycirc{1}, we have
$\begin{array}{rcl}
4(-14)+3y + 50 & = & 0 \\
3y & = & 6 \\
y & = & 2
\end{array}$Therefore, the coordinates of $P$ is $(-14,2)$. Hence, the distance between $P$ and $R$
$\begin{array}{cl}
= & \sqrt{(-14-6)^2 + ( 2-17)^2} \\
= & 25
\end{array}$ -
- $P$, $Q$ and $R$ are collinear.
- Note that the radius of $C$
$\begin{array}{cl}
= & \sqrt{(6)^2+(17)^2 – 225} \\
= & 10
\end{array}$Therefore, $PQ=15$ and $QR=10$.
Since $\Delta OPQ$ and $\Delta OQR$ have the same height, then the area of $\Delta OPQ$ : the area of $\Delta OQR$
$\begin{array}{cl}
= & PQ : QR \\
= & 15 : 10 \\
= & 3 : 2
\end{array}$
- Note that the slope of $L=\dfrac{-4}{3}$. Therefore, the slope of the straight line perpendicular to $L$
2013-I-14
Ans: (a) $(6,17)$ (b) (i) $25$ (ii) (1) Collinear (2) $3:2$