2013-II-45 Posted on 16-06-2021 By app.cch No Comments on 2013-II-45 Ans: CLet x― be the mean of the five numbers x1, x2, x3, x4 and x5. Therefore, we have 15[(x1−x―)2+…+(x5−x―)2]=13 The mean of the new five numbers =15(3x1+4+…+3x5+4)=15[3(x1+…x5)+20]=3x―+4 The variance of the new five numbers =15{[(3x1+4−(3x―+4)]2+…+[(3x5+4−(3x―+4)]2}=15[(3x1−3x―)2+…+(3x5−3x―)2]=15×9[(x1−x―)2+…+(x5−x―)2]=9×13=117 Same Topic: 2013-II-27 2013-II-28 2013-II-29 2013-II-30 2013, HKDSE-MATH, Paper 2 Tags:Statistics