Ans: (a) $x^2+(y-3)^2=10^2$ (b) (i) $3x+4y-37=0$ (ii) Perpendicular bisector of $AG$ (iii) $40$
- The radius of $C$
$\begin{array}{cl}
= & \sqrt{(6-0)^2 + (11-3)^2} \\
= & 10
\end{array}$Hence, the equation of $C$ is
$\begin{array}{rcl}
(x-0)^2 + (y-3)^2 & = & 10^2 \\
x^2 +y^2 – 6y – 91 & = & 0
\end{array}$ -
- Let $P=(x,y)$.
$\begin{array}{rcl}
AP & = & GP \\
\sqrt{(x-6)^2+(y-11)^2} & = & \sqrt{(x-0)^2+(y-3)^2} \\
x^2 -12x +36 +y^2 -22y+121 & = & x^2 + y^2 -6y +9 \\
-12x -16y + 148 & = & 0 \\
3x+4y-37 & = & 0
\end{array}$ - $\Gamma$ is the perpendicular bisector of $AG$.
- Let $T$ be the intersection point of $GA$ and $QR$. Note that $GA\perp QR$. Hence $QT=TR$. Also, since $\Gamma$ is the perpendicular bisector of $AG$, then $AT=TG$. Therefore, quadrilateral $AQGR$ is a rhombus. Hence, the perimeter of the quadrilateral $AQGR$
$\begin{array}{cl}
= & 4 \times AQ \\
= & 4 \times \text{ the radius of $C$} \\
= & 4 \times 10 \\
= & 40
\end{array}$
- Let $P=(x,y)$.