- The required probability
$\begin{array}{cl}
= & \dfrac{1}{6} + \dfrac{5}{6} \times \dfrac{5}{6} \times \dfrac{1}{6} + \ldots \\
= & \dfrac{\frac{1}{6}}{1-(\frac{5}{6})^2} \\
= & \dfrac{6}{11}
\end{array}$ -
- The probability of getting $10$ tokens
$\begin{array}{cl}
= & \dfrac{1}{8}\times \dfrac{1}{8} \times 8 \\
= & \dfrac{1}{8}
\end{array}$The probability of getting $5$ tokens
$\begin{array}{cl}
= & \dfrac{7}{8}\times \dfrac{1}{8} + \dfrac{7}{8}\times \dfrac{1}{8} \\
= & \dfrac{7}{32}
\end{array}$Therefore, the expected number of tokens got
$\begin{array}{cl}
= & 10 \times \dfrac{1}{8} + 5 \times \dfrac{7}{32} + 0 \times (1- \dfrac{1}{8} – \dfrac{7}{32}) \\
= & \dfrac{75}{32}
\end{array}$ - For Option 2. The probability of getting $50$ tokens
$\begin{array}{cl}
= & \dfrac{1}{8}\times \dfrac{1}{8} \times \dfrac{1}{8} \times 8 \\
= & \dfrac{1}{64}
\end{array}$The potability of getting $10$ tokens
$\begin{array}{cl}
= & \dfrac{1}{8} \times \dfrac{2}{8} \times \dfrac{1}{8} \times 6 + \dfrac{1}{8} \times \dfrac{2}{8} \times \dfrac{1}{8} \times 6 + \dfrac{1}{8} \times \dfrac{2}{8} \times \dfrac{1}{8} \times 6 \\
= & \dfrac{9}{128}
\end{array}$The probability of getting $5$ tokens
$\begin{array}{cl}
= & \dfrac{C^3_2 \times 7 \times 2}{8^3} \\
= & \dfrac{21}{256}
\end{array}$Therefore, the expected number of tokens got
$\begin{array}{cl}
= & 50 \times \dfrac{1}{64} + 10 \times \dfrac{9}{128} + 5 \times \dfrac{21}{256} + 0 \times (1 – \dfrac{1}{64} – \dfrac{9}{128} – \dfrac{21}{256} )\\
= & \dfrac{485}{256}
\end{array}$Since $\dfrac{75}{32} > \dfrac{485}{256}$, then the player of the second round should adopt Option 1.
- The probability of Ada getting no tokens
$\begin{array}{cl}
= & 1 – \dfrac{6}{11} \times ( \dfrac{1}{8} + \dfrac{7}{32} ) \\
= & \dfrac{13}{16} \\
= & 0.8125 \\
< & 0.9 \end{array}$Therefore, the claim is not correct.
- The probability of getting $10$ tokens
2014-I-19
Ans: (a) $\dfrac{6}{11}$ (b) (i) $\dfrac{75}{32}$ (ii) Option 1 (iii) Incorrect