Ans: A
Let $\$x$ and $\$y$ be the price of a bowls and a cup respectively. Then we have
Let $\$x$ and $\$y$ be the price of a bowls and a cup respectively. Then we have
$\left\{ \begin{array}{ll}
2x + 3y = 506 & \ldots \unicode{x2460} \\
5x =4y & \ldots \unicode{x2461}
\end{array} \right.$
From $\unicode{x2461}$, we have
$\begin{array}{rcl}
5x & = & 4y \\
y & = & \dfrac{5}{4} x \ \ldots \unicode{x2462}
\end{array}$
Sub. $\unicode{x2462}$ into $\unicode{x2460}$, we have
$\begin{array}{rcl}
2x + 3 (\dfrac{5}{4} x ) & = & 506 \\
8x + 15x & = & 2024 \\
23 x & = & 2024 \\
x & = & 88
\end{array}$
Therefore, the price of a bowl is $\$88$.