Ans: B
$\begin{array}{rcl}
\log 124^{241} & = & 241 \log 124 \\
& = & 504.514\ 626\ 1
\end{array}$
$\begin{array}{rcl}
\log 124^{241} & = & 241 \log 124 \\
& = & 504.514\ 626\ 1
\end{array}$
$\begin{array}{rcl}
\log 241^{214} & = & 214 \log 241 \\
& = & 509.751\ 647\ 1
\end{array}$
$\begin{array}{rcl}
\log 412^{142} & = & 142 \log 412 \\
& = & 371.315\ 404\ 7
\end{array}$
$\begin{array}{rcl}
\log 421^{124} & = & 124 \log 421 \\
& = & 325.410\ 979\ 9
\end{array}$
Since $\log 241^{214} = 509.751\ 647\ 1$ is the greatest, then $241^{214}$ is the greatest.