Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2015-I-08

Posted on 16-06-2021 By app.cch No Comments on 2015-I-08
Ans: $\angle DBC=39^\circ$, $\angle ABE=22^\circ$
Since $AB=AD$, then we have

$\begin{array}{ll}
\angle ABD = \angle ADB & \text{(base $\angle$s, isos. $\Delta$)} \\
\angle ABD = 58^\circ
\end{array}$

Since $ABCD$ is a cyclic quadrilateral, then we have

$\begin{array}{ll}
\angle ABC + \angle ADC = 180^\circ & \text{(opp. $\angle$s, cyc. quad.)} \\
\end{array}$

$\begin{array}{rcl}
\angle DBC & = & 180^\circ – \angle ADB – \angle ABC – \angle CBD \\
\angle DBC & = & 180^\circ – 58^\circ – 58^\circ – 25^\circ \\
\angle DBC & = & 39^\circ
\end{array}$

Note that

$\begin{array}{ll}
\angle ACB = \angle ADB & \text{($\angle$s in the same segment)} \\
\angle ACB = 58^\circ
\end{array}$

In $\Delta BCE$, since $BC=CE$, we have

$\begin{array}{ll}
\angle CBE = \angle CEB & \text{(base $\angle$s, isos. $\Delta$)}
\end{array}$

Therefore, we have

$\begin{array}{ll}
\angle CBE = (180^\circ – \angle BCE) \div 2 & \text{($\angle$ sum of $\Delta$)} \\
\angle CBE = (180^\circ – 58^\circ) \div 2 \\
\angle CBE = 61^\circ
\end{array}$

Therefore, $\angle ABE$

$\begin{array}{cl}
= & \angle ABC – \angle CBE \\
= & 58^\circ + 25^\circ – 61^\circ \\
= & 22^\circ
\end{array}$

Same Topic:

Default Thumbnail2015-II-20 Default Thumbnail2015-II-21 Default Thumbnail2015-II-40 Default Thumbnail2016-II-22
2015, HKDSE-MATH, Paper 1 Tags:Properties of Circles

Post navigation

Previous Post: 2016-II-45
Next Post: 2014-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme