- In $\Delta ABE$ and $\Delta BCF$,
$\begin{array}{ll}
AE = BF & \text{(given)} \\
\angle ABE = \angle BCF = 90^\circ & \text{(property of square)} \\
AB = BC & \text{(property of square)}
\end{array}$Therefore, $\Delta ABE \cong \Delta BCF \text{ (RHS)}$.
- Since $\Delta ABE \cong \Delta BCF$, we have
$\begin{array}{ll}
\angle FBE = \angle EAB & \text{(corr. $\angle$s, $\cong \Delta$s)}
\end{array}$In $\Delta BGE$,
$\begin{array}{ll}
\angle BGE = 180^\circ – \angle GBE – \angle GEB & \text{($\angle$ sum of $\Delta$)} \\
\angle BGE = 180^\circ – \angle EAB – \angle AEB & \text{(proved)} \\
\angle BGE = \angle ABE & \text{($\angle$ sum of $\Delta$)} \\
\angle BGE = 90^\circ & \text{(property of square)}
\end{array}$Therefore, $\Delta BGE$ is a right-angled triangle.
- Since $\Delta ABE \cong \Delta BCF$, we have
$\begin{array}{ll}
BE = CF & \text{(corr. sides, $\cong\Delta$s)} \\
BE = 15 \text{ cm}
\end{array}$Then by applying Pythagoras Theorem $\Delta BGE$, we have
$\begin{array}{rcl}
BG^2 & = & BE^2 – EG^2 \\
BG & = & \sqrt{15^2 – 9^2} \\
BE & = & 12 \text{ cm}
\end{array}$
2015-I-13
Ans: (b) Yes (c) $12\text{ cm}$